Semiring Rank Matrix Factorization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Rank-One Binary Matrix Factorization

Mining discrete patterns in binary data is important for many data analysis tasks, such as data sampling, compression, and clustering. An example is that replacing individual records with their patterns would greatly reduce data size and simplify subsequent data analysis tasks. As a straightforward approach, rank-one binary matrix approximation has been actively studied recently for mining disc...

متن کامل

Low-rank matrix factorization with attributes

We develop a new collaborative filtering (CF) method that combines both previously known users’ preferences, i.e. standard CF, as well as product/user attributes, i.e. classical function approximation, to predict a given user’s interest in a particular product. Our method is a generalized low rank matrix completion problem, where we learn a function whose inputs are pairs of vectors – the stand...

متن کامل

Nonconvex Matrix Factorization from Rank-One Measurements

We consider the problem of recovering low-rank matrices from random rank-one measurements, which spans numerous applications including covariance sketching, phase retrieval, quantum state tomography, and learning shallow polynomial neural networks, among others. Our approach is to directly estimate the low-rank factor by minimizing a nonconvex quadratic loss function via vanilla gradient descen...

متن کامل

Notes on Low-rank Matrix Factorization

Low-rank matrix factorization (MF) is an important technique in data science. The key idea of MF is that there exists latent structures in the data, by uncovering which we could obtain a compressed representation of the data. By factorizing an original matrix to low-rank matrices, MF provides a unified method for dimension reduction, clustering, and matrix completion. In this article we review ...

متن کامل

Symmetric indefinite triangular factorization revealing the rank profile matrix

We present a novel recursive algorithm for reducing a symmetric matrix to a triangular factorization which reveals the rank profile matrix. That is, the algorithm computes a factorization PAP = LDL where P is a permutation matrix, L is lower triangular with a unit diagonal and D is symmetric block diagonal with 1×1 and 2×2 antidiagonal blocks. The novel algorithm requires O(n2rω−2) arithmetic o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering

سال: 2017

ISSN: 1041-4347

DOI: 10.1109/tkde.2017.2688374