Semiclassical Double-Inequality on Heisenberg Uncertainty Relation in 1D

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalizations of Heisenberg Uncertainty Relation *

A survey on the generalizations of Heisenberg uncertainty relation and a general scheme for their entangled extensions to several states and observables is presented. The scheme is illustrated on the examples of one and two states and canonical quantum observables, and spin and quasi-spin components.

متن کامل

Heisenberg Uncertainty Inequality for Gabor Transform

We discuss the Heisenberg uncertainty inequality for groups of the form K Rn , K is a separable unimodular locally compact group of type I. This inequality is also proved for Gabor transform for several classes of groups of the form K Rn . Mathematics subject classification (2010): Primary 43A32; Secondary 43A30, 22D10, 22D30, 22E25.

متن کامل

Heisenberg Uncertainty Relation in Quantum Liouville Equation

We consider the quantum Liouville equation and give a characterization of the solutions which satisfy the Heisenberg uncertainty relation. We analyze three cases. Initially we consider a particular solution of the quantum Liouville equation: the Wigner transform f x,v,t of a generic solution ψ x;t of the Schrödinger equation. We give a representation of ψ x, t by the Hermite functions. We show ...

متن کامل

Heisenberg uncertainty relation and statistical measures in the square well

A non stationary state in the one-dimensional infinite square well formed by a combination of the ground state and the first excited one is considered. The statistical complexity and the Fisher-Shannon entropy in position and momentum are calculated with time for this system. These measures are compared with the Heisenberg uncertainty relation, ∆x∆p. It is observed that the extreme values of ∆x...

متن کامل

On the Heisenberg-weyl Inequality

In 1927, W. Heisenberg demonstrated the impossibility of specifying simultaneously the position and the momentum of an electron within an atom.The well-known second moment Heisenberg-Weyl inequality states: Assume that f : R → C is a complex valued function of a random real variable x such that f ∈ L(R). Then the product of the second moment of the random real x for |f | and the second moment o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Physica Polonica A

سال: 2016

ISSN: 0587-4246,1898-794X

DOI: 10.12693/aphyspola.129.1093