Semi-supervised multi-label collective classification ensemble for functional genomics
نویسندگان
چکیده
منابع مشابه
Semi-supervised Learning for Multi-label Classification
In this report we consider the semi-supervised learning problem for multi-label image classification, aiming at effectively taking advantage of both labeled and unlabeled training data in the training process. In particular, we implement and analyze various semi-supervised learning approaches including a support vector machine (SVM) method facilitated by principal component analysis (PCA), and ...
متن کاملSemi-Supervised Collective Classification via Hybrid Label Regularization
Many classification problems involve data instances that are interlinked with each other, such as webpages connected by hyperlinks. Techniques for collective classification (CC) often increase accuracy for such data graphs, but usually require a fully-labeled training graph. In contrast, we examine how to improve the semi-supervised learning of CC models when given only a sparsely-labeled graph...
متن کاملSemi-supervised Latent Dirichlet Allocation for Multi-label Text Classification
This paper proposes a semi-supervised latent Dirichlet allocation (ssLDA) method, which differs from the existing supervised topic models for multi-label classification in mainly two aspects. Firstly both labeled and unlabeled learning data are used in ssLDA to train a model, which is very important for reducing the cost by manually labeling, especially when obtaining a fully labeled dataset is...
متن کاملSemi-Supervised Dimension Reduction for Multi-Label Classification
A significant challenge to make learning techniques more suitable for general purpose use in AI is to move beyond i) complete supervision, ii) low dimensional data and iii) a single label per instance. Solving this challenge would allow making predictions for high dimensional large dataset with multiple (but possibly incomplete) labelings. While other work has addressed each of these problems s...
متن کاملMulti-Label Collective Classification
Collective classification in relational data has become an important and active research topic in the last decade, where class labels for a group of linked instances are correlated and need to be predicted simultaneously. Collective classification has a wide variety of real world applications, e.g. hyperlinked document classification, social networks analysis and collaboration networks analysis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Genomics
سال: 2014
ISSN: 1471-2164
DOI: 10.1186/1471-2164-15-s9-s17