Semi-Riemannian submersions from real and complex pseudo-hyperbolic spaces
نویسندگان
چکیده
منابع مشابه
Semi-slant Pseudo-riemannian Submersions from Indefinite Almost Contact 3-structure Manifolds onto Pseudo-riemannian Manifolds
In this paper, we introduce the notion of a semi-slant pseudoRiemannian submersion from an indefinite almost contact 3-structure manifold onto a pseudo-Riemannian manifold. We investigate the geometry of foliations determined by horizontal and vertical distributions and provide a non-trivial example. We also find a necessary and sufficient condition for a semi-slant submersion to be totally geo...
متن کاملBounded Riemannian Submersions
In this paper, we establish global metric properties of a Riemannian submersion π : Mn+k → Bn for which the fundamental tensors are bounded in norm: |A| ≤ CA, |T | ≤ CT . For example, if B is compact and simply connected, then there exists a constant C = C(B,CA, CT , k) such that for all p ∈ B, dFp ≤ C · dM , where dFp denotes the intrinsic distance function on the fiber Fp := π−1(p), and dM de...
متن کاملFlats in Riemannian Submersions from Lie Groups
We prove that any base space of Riemannian submersion from a compact Lie group (with bi-invariant metric) must have a basic property previously known for normal biquotients; namely, any zero-curvature plane exponentiates to a flat.
متن کاملSpaces of pseudo-Riemannian geodesics and pseudo-Euclidean billiards
Many classical facts in Riemannian geometry have their pseudoRiemannian analogs. For instance, the spaces of space-like and timelike geodesics on a pseudo-Riemannian manifold have natural symplectic structures (just like in the Riemannian case), while the space of light-like geodesics has a natural contact structure. We discuss the geometry of these structures in detail, as well as introduce an...
متن کاملSpaces of pseudo - Riemannian geodesics and pseudo - Euclidean billiards Boris
In pseudo-Riemannian geometry the spaces of space-like and timelike geodesics on a pseudo-Riemannian manifold have natural symplectic structures (just like in the Riemannian case), while the space of light-like geodesics has a natural contact structure. Furthermore, the space of all geodesics has a structure of a Jacobi manifold. We describe the geometry of these structures and their generaliza...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Differential Geometry and its Applications
سال: 2002
ISSN: 0926-2245
DOI: 10.1016/s0926-2245(01)00070-5