Semi-real-time acquisition for fast pure shift NMR at maximum resolution
نویسندگان
چکیده
منابع مشابه
Ultraclean pure shift NMR.
"Pure shift" methods can greatly improve the resolution of proton NMR spectra. However, current pure shift spectra show small periodic artefacts that prevent their use for studying dilute mixture components. A new technique, compatible with all current pure shift methods, is presented that suppresses such sidebands to arbitrary order, allowing ultraclean spectra to be obtained.
متن کاملReal-time pure shift 15N HSQC of proteins: a real improvement in resolution and sensitivity
Spectral resolution in proton NMR spectroscopy is reduced by the splitting of resonances into multiplets due to the effect of homonuclear scalar couplings. Although these effects are often hidden in protein NMR spectroscopy by low digital resolution and routine apodization, behind the scenes homonuclear scalar couplings increase spectral overcrowding. The possibilities for biomolecular NMR offe...
متن کاملReal-time pure shift ¹⁵N HSQC of proteins: a real improvement in resolution and sensitivity.
Spectral resolution in proton NMR spectroscopy is reduced by the splitting of resonances into multiplets due to the effect of homonuclear scalar couplings. Although these effects are often hidden in protein NMR spectroscopy by low digital resolution and routine apodization, behind the scenes homonuclear scalar couplings increase spectral overcrowding. The possibilities for biomolecular NMR offe...
متن کاملMeasuring couplings in crowded NMR spectra: pure shift NMR with multiplet analysis.
The PSYCHE method for pure shift NMR is exploited to generate 2D J spectra with full decoupling in one dimension and multiplet structure in the other, allowing spin-spin coupling constants to be measured even in very crowded spectra. Significant improvements over existing techniques are demonstrated for the hormones estradiol and androstenedione.
متن کاملUltrahigh resolution protein structures using NMR chemical shift tensors.
NMR chemical shift tensors (CSTs) in proteins, as well as their orientations, represent an important new restraint class for protein structure refinement and determination. Here, we present the first determination of both CST magnitudes and orientations for (13)Cα and (15)N (peptide backbone) groups in a protein, the β1 IgG binding domain of protein G from Streptococcus spp., GB1. Site-specific...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Magnetic Resonance
سال: 2018
ISSN: 1090-7807
DOI: 10.1016/j.jmr.2018.05.012