Semi-Gaussian subspaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating Non-Gaussian Subspaces by Characteristic Functions

In this article, we consider high-dimensional data which contains a low-dimensional non-Gaussian structure contaminated with Gaussian noise and propose a new method to identify the non-Gaussian subspace. A linear dimension reduction algorithm based on the fourth-order cumulant tensor was proposed in our previous work [4]. Although it works well for sub-Gaussian structures, the performance is no...

متن کامل

Semi-Supervised Gaussian Process Classifiers

In this paper, we propose a graph-based construction of semi-supervised Gaussian process classifiers. Our method is based on recently proposed techniques for incorporating the geometric properties of unlabeled data within globally defined kernel functions. The full machinery for standard supervised Gaussian process inference is brought to bear on the problem of learning from labeled and unlabel...

متن کامل

Joint low-rank approximation for extracting non-Gaussian subspaces

In this article, we consider high-dimensional data which contains a low-dimensional non-Gaussian structure contaminated with Gaussian noise. Motivated by the joint diagonalization algorithms, we propose a linear dimension reduction procedure called joint low-dimensional approximation (JLA) to identify the non-Gaussian subspace. The method uses matrices whose non-zero eigen spaces coincide with ...

متن کامل

Analyzing hyperspectral images into multiple subspaces using Gaussian mixture models

I argue that the spectra in a hyperspectral datacube will usually lie in several low-dimensional subspaces, and that these subspaces are more easily estimated from the data than the endmembers. I present an algorithm for finding the subspaces. The algorithm fits the data with a Gaussian mixture model, in which the means and covariance matrices are parameterized in terms of the subspaces. The lo...

متن کامل

A Novel Dimension Reduction Procedure for Searching Non-Gaussian Subspaces

In this article, we consider high-dimensional data which contains a low-dimensional non-Gaussian structure contaminated with Gaussian noise and propose a new linear method to identify the non-Gaussian subspace. Our method NGCA (Non-Gaussian Component Analysis) is based on a very general semiparametric framework and has a theoretical guarantee that the estimation error of finding the non-Gaussia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1962

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1962-0138986-6