Self-Sampling for Neural Point Cloud Consolidation

نویسندگان

چکیده

We introduce a novel technique for neural point cloud consolidation which learns from only the input cloud. Unlike other up-sampling methods analyze shapes via local patches, in this work, we learn global subsets. repeatedly self-sample with subsets that are used to train deep network. Specifically, define source and target according desired criteria (e.g., generating sharp points or sparse regions). The network mapping subsets, implicitly consolidate During inference, is fed random of input, it displaces synthesize consolidated set. leverage inductive bias networks eliminate noise outliers, notoriously difficult problem consolidation. shared weights optimized over entire shape, learning non-local statistics exploiting recurrence local-scale geometries. encodes distribution underlying shape surface within fixed set kernels, results best explanation surface. demonstrate ability sets variety shapes, while eliminating outliers noise.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SO-Net: Self-Organizing Network for Point Cloud Analysis

This paper presents SO-Net, a permutation invariant architecture for deep learning with orderless point clouds. The SO-Net models the spatial distribution of point cloud by building a Self-Organizing Map (SOM). Based on the SOM, SO-Net performs hierarchical feature extraction on individual points and SOM nodes, and ultimately represents the input point cloud by a single feature vector. The rece...

متن کامل

Energy Aware Consolidation for Cloud Computing

Consolidation of applications in cloud computing environments presents a significant opportunity for energy optimization. As a first step toward enabling energy efficient consolidation, we study the inter-relationships between energy consumption, resource utilization, and performance of consolidated workloads. The study reveals the energy performance trade-offs for consolidation and shows that ...

متن کامل

Saivmm: Self Adaptive Intelligent Vmm Scheduler for Server Consolidation in Cloud Environment

Cloud computing is an on-demand resource provisioning technology and server virtualization act as a driving force of cloud. Virtualization consolidates multiple physical machines into one machine, thereby cut cost and improves efficiency of data center. However, as all virtual machines (VM) share the same physical resources, contention for shared resources cause significant variance in observed...

متن کامل

Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area

Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Graphics

سال: 2021

ISSN: ['0730-0301', '1557-7368']

DOI: https://doi.org/10.1145/3470645