Self-organizing maps for texture classification
نویسندگان
چکیده
منابع مشابه
Unsupervised Texture Image Classification using Self-Organizing Maps
In this paper we report results from unsupervised texture image classification on a data set of images collected with our intelligent machine vision system for pattern recognition (assuming no a priori human vision expert knowledge is available for the image classes). The simulation of the investigated system includes four main phases: data collection and feature extraction, feature analysis, c...
متن کاملConcurrent Self-Organizing Maps for Pattern Classification
We present a new neural classification model called Concurrent Self-Organizing Maps (CSOM), representing a winner-takes-all collection of small SOM networks. Each SOM of the system is trained individually to provide best results for one class only. We have considered two significant applications: face recognition and multispectral satellite image classification. For first application, we have u...
متن کاملAffective Engineering for Mud Wall Texture using Self-organizing Maps
Affective/Kansei engineering is used to analyze subjective responses to a streetscape plan for a historic townscape. The Chofu area in Shimonoseki was chosen for the research. The appearance of the streetscape is evaluated based on actual photographs using a traditional semantic differential method. Guidelines are often formulated to promote landscaping plans in historic towns; it is especially...
متن کاملGalaxy Morphology without Classification : Self Organizing Maps
We examine a general framework for visualizing datasets of high (> 2) dimensionality, and demonstrate it using the morphology of galaxies at moderate redshifts. The distributions of various populations of such galaxies are examined in a space spanned by four purely morphological parameters. Galaxy images are taken from the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC2) in th...
متن کاملusing game theory techniques in self-organizing maps training
شبکه خود سازمانده پرکاربردترین شبکه عصبی برای انجام خوشه بندی و کوانتیزه نمودن برداری است. از زمان معرفی این شبکه تاکنون، از این روش در مسائل مختلف در حوزه های گوناگون استفاده و توسعه ها و بهبودهای متعددی برای آن ارائه شده است. شبکه خودسازمانده از تعدادی سلول برای تخمین تابع توزیع الگوهای ورودی در فضای چندبعدی استفاده می کند. احتمال وجود سلول مرده مشکلی اساسی در الگوریتم شبکه خودسازمانده به حسا...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Computing and Applications
سال: 2012
ISSN: 0941-0643,1433-3058
DOI: 10.1007/s00521-011-0797-x