Self Correspondence Distillation for End-to-End Weakly-Supervised Semantic Segmentation

نویسندگان

چکیده

Efficiently training accurate deep models for weakly supervised semantic segmentation (WSSS) with image-level labels is challenging and important. Recently, end-to-end WSSS methods have become the focus of research due to their high efficiency. However, current suffer from insufficient extraction comprehensive information, resulting in low-quality pseudo-labels sub-optimal solutions WSSS. To this end, we propose a simple novel Self Correspondence Distillation (SCD) method refine without introducing external supervision. Our SCD enables network utilize feature correspondence derived itself as distillation target, which can enhance network's learning process by complementing information. In addition, further improve accuracy, design Variation-aware Refine Module local consistency computing pixel-level variation. Finally, present an efficient Transformer-based framework (TSCD) via task. Extensive experiments on PASCAL VOC 2012 MS COCO 2014 datasets demonstrate that our significantly outperforms other state-of-the-art methods. code available at https://github.com/Rongtao-Xu/RepresentationLearning/tree/main/SCD-AAAI2023.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

End-to-end weakly-supervised semantic alignment

We tackle the task of semantic alignment where the goal is to compute dense semantic correspondence aligning two images depicting objects of the same category. This is a challenging task due to large intra-class variation, changes in viewpoint and background clutter. We present the following three principal contributions. First, we develop a convolutional neural network architecture for semanti...

متن کامل

Weakly Supervised RBM for Semantic Segmentation

In this paper, we propose a weakly supervised Restricted Boltzmann Machines (WRBM) approach to deal with the task of semantic segmentation with only image-level labels available. In WRBM, its hidden nodes are divided into multiple blocks, and each block corresponds to a specific label. Accordingly, semantic segmentation can be directly modeled by learning the mapping from visible layer to the h...

متن کامل

Sparse Reconstruction for Weakly Supervised Semantic Segmentation

We propose a novel approach to semantic segmentation using weakly supervised labels. In traditional fully supervised methods, superpixel labels are available for training; however, it is not easy to obtain enough labeled superpixels to learn a satisfying model for semantic segmentation. By contrast, only image-level labels are necessary in weakly supervised methods, which makes them more practi...

متن کامل

Region-Based Semantic Segmentation with End-to-End Training

We propose a novel method for semantic segmentation, the task of labeling each pixel in an image with a semantic class. Our method combines the advantages of the two main competing paradigms. Methods based on region classification offer proper spatial support for appearance measurements, but typically operate in two separate stages, none of which targets pixel labeling performance at the end of...

متن کامل

Weakly-Supervised Semantic Segmentation Using Motion Cues

Fully convolutional neural networks (FCNNs) trained on a large number of images with strong pixel-level annotations have become the new state of the art for the semantic segmentation task. While there have been recent attempts to learn FCNNs from image-level weak annotations, they need additional constraints, such as the size of an object, to obtain reasonable performance. To address this issue...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2023

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v37i3.25408