SelectNet: Self-paced learning for high-dimensional partial differential equations
نویسندگان
چکیده
The least squares method with deep neural networks as function parametrization has been applied to solve certain high-dimensional partial differential equations (PDEs) successfully; however, its convergence is slow and might not be guaranteed even within a simple class of PDEs. To improve the network-based model, we introduce novel self-paced learning framework, SelectNet, which quantifies difficulty training samples, treats samples equally in early stage training, slowly explores more challenging e.g., larger residual errors, mimicking human cognitive process for efficient learning. In particular, selection network PDE solution are trained simultaneously; adaptively weighting achieving goal Numerical examples indicate that proposed SelectNet model outperforms existing models on speed robustness, especially low-regularity solutions.
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations
We propose a new algorithm for solving parabolic partial differential equations (PDEs) and backward stochastic differential equations (BSDEs) in high dimension, by making an analogy between the BSDE and reinforcement learning with the gradient of the solution playing the role of the policy function, and the loss function given by the error between the prescribed terminal condition and the solut...
متن کاملMachine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations
High-dimensional partial differential equations (PDE) appear in a number of models from the financial industry, such as in derivative pricing models, credit valuation adjustment (CVA) models, or portfolio optimization models. The PDEs in such applications are high-dimensional as the dimension corresponds to the number of financial assets in a portfolio. Moreover, such PDEs are often fully nonli...
متن کاملLearning Partial Differential Equations for Computer Vision ∗
Partial differential equations (PDEs) have been successful for solving many problems in computer vision. However, the existing PDEs are all crafted by people with skill, based on some limited and intuitive considerations. As a result, the designed PDEs may not be able to handle complex situations in real applications. Moreover, human intuition may not apply if the vision task is hard to describ...
متن کاملOvercoming the curse of dimensionality: Solving high-dimensional partial differential equations using deep learning
Developing algorithms for solving high-dimensional partial differential equations (PDEs) has been an exceedingly difficult task for a long time, due to the notoriously difficult problem known as “the curse of dimensionality”. This paper presents a deep learning-based approach that can handle general high-dimensional parabolic PDEs. To this end, the PDEs are reformulated as a control theory prob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2021
ISSN: ['1090-2716', '0021-9991']
DOI: https://doi.org/10.1016/j.jcp.2021.110444