Segmented tomographic evaluation of structural degradation of carbon support in proton exchange membrane fuel cells

نویسندگان

چکیده

The variation of the three-dimensional (3D) structure membrane electrode a fuel cell during proton exchange cycling involves corrosion/compaction carbon support. increasing degradation continuously reduces electrocatalytic performance cells (PEM-FCs). This phenomenon can be explained by performing 3D tomographic analysis at nanoscale. However, conventional approaches which present limited experimental feasibility, cannot perform such evaluation and have not provided sufficient structural information with statistical significance thus far. Therefore, reliable methodology is required for geometrical structure. Here, we propose segmented approach employs pore network that enables visualization parameters corresponding to porous high resolution. utilized evaluate after in terms local surface area, size distribution, their networking. These body were demonstrated substantially reduced owing cycling-induced degradation. deeper understanding supports contribute development stable PEM-FC electrodes.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of inclined radial flow in proton exchange membrane fuel cells performance

Computational fluid dynamics analysis was employed to investigate the radial flow field patterns of proton exchange membrane fuel cells (PEMFC) with different channel geometries at high operating current densities. 3D, non-isothermal was used with single straight channel geometry. Our study showed that new generation of fuel cells with circle stack with the same active area and inlet area gave ...

متن کامل

Dynamic investigation of hydrocarbon proton exchange membrane Fuel Cell

Sulfonated polyether ether ketone (SPEEK) is categorized in a nonfluorinated aromatic hydrocarbon proton exchange membrane (PEM) group and considered as a suitable substitute for common per-fluorinated membranes, such as Nafion, due to wider operating temperature, less feed gas crossover, and lower cost. Since modeling results in a better understanding of a phenomenon, in this study a dynamic o...

متن کامل

Modeling and experimental study on the sealing gasket of proton exchange membrane fuel cells

In this study cross section geometry and material of gasket in proton exchange membrane (PEM) fuel cells have been investigated to achieve optimized fuel cell in terms of energy efficiency. The role of gaskets in fuel cells is sealing of gas flow channels and preventing from combination of them. In a PEM stack, gasket with approved geometry that suffers more stress has better sealing. For this ...

متن کامل

Synthesizing 2D MoS2 Nanofins on carbon nanospheres as catalyst support for Proton Exchange Membrane Fuel Cells

Highly dense 2D MoS2 fin-like nanostructures on carbon nanospheres were fabricated and formed the main catalyst support structure in the oxygen reduction reaction (ORR) for polymer electrolyte membrane (PEM) fuel cells. These nanofins were observed growing perpendicular to the carbon nanosphere surface in random orientations and high resolution transmission electron microscope confirmed 2D laye...

متن کامل

Novel PVA/La2Ce2O7 hybrid nanocomposite membranes for application in proton exchange membrane fuel cells

Proton exchange membrane fuel cells (PEMFCs) are electrochemical devices that show the highest power densities compared to the other type of fuel cell. In this work, nanocomposite membranes used for proton exchange membrane fuel cells as poly(vinyl alcohol)/La2Ce2O7 (PVA-LC) with the aim of increasing the water uptake and proton conductivity. Glutaraldehyde (GA) was used as cross linking agent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Energy Chemistry

سال: 2022

ISSN: ['2096-885X', '2095-4956']

DOI: https://doi.org/10.1016/j.jechem.2022.07.036