Second order splitting for a class of fourth order equations
نویسندگان
چکیده
منابع مشابه
THIRD-ORDER AND FOURTH-ORDER ITERATIVE METHODS FREE FROM SECOND DERIVATIVE FOR FINDING MULTIPLE ROOTS OF NONLINEAR EQUATIONS
In this paper, we present two new families of third-order and fourth-order methods for finding multiple roots of nonlinear equations. Each of them requires one evaluation of the function and two of its first derivative per iteration. Several numerical examples are given to illustrate the performance of the presented methods.
متن کاملPreconditioning a class of fourth order problems by operator splitting
We develop preconditioners for systems arising from finite element discretizations of parabolic problems which are fourth order in space. We consider boundary conditions which yield a natural splitting of the discretized fourth order operator into two (discrete) linear second order elliptic operators, and exploit this property in designing the preconditioners. The underlying idea is that effici...
متن کاملSecond-order splitting schemes for a class of reactive systems
We consider the numerical time integration of a class of reaction–transport systems that are described by a set of ordinary differential equations for primary variables. In the governing equations, the terms involved may require the knowledge of secondary variables, which are functions of the primary variables. Specifically, we consider the case where, given the primary variables, the evaluatio...
متن کاملFourth-Order Splitting Methods for Time-Dependant Differential Equations
This study was suggested by previous work on the simulation of evolution equations with scale-dependent processes, e.g., wave-propagation or heat-transfer, that are modeled by wave equations or heat equations. Here, we study both parabolic and hyperbolic equations. We focus on ADI (alternating direction implicit) methods and LOD (locally one-dimensional) methods, which are standard splitting me...
متن کاملA Finite Element Splitting Extrapolation for Second Order Hyperbolic Equations
Splitting extrapolation is an efficient technique for solving large scale scientific and engineering problems in parallel. This article discusses a finite element splitting extrapolation for second order hyperbolic equations with time-dependent coefficients. This method possesses a higher degree of parallelism, less computational complexity, and more flexibility than Richardson extrapolation wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2019
ISSN: 0025-5718,1088-6842
DOI: 10.1090/mcom/3425