Second-order optimality conditions with the envelope-like effect in nonsmooth multiobjective mathematical programming II: Optimality conditions
نویسندگان
چکیده
منابع مشابه
A necessary second-order optimality condition in nonsmooth mathematical programming
Generalized second–order directional derivatives for nonsmooth real–valued functions are studied and their connections with second–order variational sets are investigated. A necessary second–order optimality condition for problems with inequality constraints is obtained.
متن کاملNew optimality conditions for multiobjective fuzzy programming problems
In this paper we study fuzzy multiobjective optimization problems defined for $n$ variables. Based on a new $p$-dimensional fuzzy stationary-point definition, necessary efficiency conditions are obtained. And we prove that these conditions are also sufficient under new fuzzy generalized convexity notions. Furthermore, the results are obtained under general differentiability hypothesis.
متن کاملOn sufficient second order optimality conditions in multiobjective optimization
A second order sufficient optimality criterion is presented for a multiobjective problem subject to a constraint given just as a set. To this aim, we first refine known necessary conditions in such a way that the sufficient ones differ by the replacement of inequalities by strict inequalities. Furthermore, we show that no relationship holds between this criterion and a sufficient multipliers ru...
متن کاملSecond-Order Optimality Conditions for Mathematical Programs with Equilibrium Constraints
We study second-order optimality conditions for mathematical programs with equilibrium constraints (MPEC). Firstly, we improve some second-order optimality conditions for standard nonlinear programming problems using some newly discovered constraint qualifications in the literature, and apply them to MPEC. Then, we introduce some MPEC variants of these new constraint qualifications, which are a...
متن کاملSufficient Second Order Optimality Conditions for C Multiobjective Optimization Problems
In this work, we use the notion of Approximate Hessian introduced by Jeyakumar and Luc [19], and a special scalarization to establish sufficient optimality conditions for constrained multiobjective optimization problems. Throughout this paper, the data are assumed to be of class C, but not necessarily of class C.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2013
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2012.12.075