Search of strong lens systems in the Dark Energy Survey using convolutional neural networks

نویسندگان

چکیده

We present our search for strong lens, galaxy-scale systems in the first data release of Dark Energy Survey (DES), based on a color-selected parent sample 18 745 029 luminous red galaxies (LRGs). used convolutional neural network (CNN) to grade this LRG with values between 0 (non-lens) and 1 (lens). Our training set mock lenses is data-driven, that is, it uses lensed sources taken from HST-COSMOS images lensing DES sample. A total 76 582 cutouts were obtained score above 0.9, which then visually inspected classified into two catalogs. The one contains 405 lens candidates, 90 clear features counterparts, while other 315 require more evidence, such as higher resolution imaging or spectra, be conclusive. 186 candidates are newly identified by search, 16 among most promising (best) candidates. second catalog includes 539 ring galaxy This will useful false positive future CNNs. For best we carry out color-based deblending source light without fitting any analytical profile data. method shown very efficient deblending, even compact objects complex morphology. Finally, selected 52 single deflector test an automated modeling pipeline has capacity successfully model 79% within acceptable computing runtime.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Search-Convolutional Neural Networks

We present a new deterministic relational model derived from convolutional neural networks. Search-Convolutional Neural Networks (SCNNs) extend the notion of convolution to graph search to construct a rich latent representation that extracts local behavior from general graph-structured data. Unlike other neural network models that take graph-structured data as input, SCNNs have a parameterizati...

متن کامل

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

Using Deep Convolutional Neural Networks in Monte Carlo Tree Search

Deep Convolutional Neural Networks have revolutionized Computer Go. Large networks have emerged as state-of-the-art models for move prediction and are used not only as stand-alone players but also inside Monte Carlo Tree Search to select and bias moves. Using neural networks inside the tree search is a challenge due to their slow execution time even if accelerated on a GPU. In this paper we eva...

متن کامل

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Energy Propagation in Deep Convolutional Neural Networks

Many practical machine learning tasks employ very deep convolutional neural networks. Such large depths pose formidable computational challenges in training and operating the network. It is therefore important to understand how many layers are actually needed to have most of the input signal’s features be contained in the feature vector generated by the network. This question can be formalized ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Astronomy and Astrophysics

سال: 2022

ISSN: ['0004-6361', '1432-0746']

DOI: https://doi.org/10.1051/0004-6361/202142119