Schwarz lemma and boundary Schwarz lemma for pluriharmonic mappings
نویسندگان
چکیده
منابع مشابه
A Schwarz Lemma for Correspondences and Applications
A version of the Schwarz lemma for correspondences is studied. Two applications are obtained namely, the ‘non-increasing’ property of the Kobayashi metric under correspondences and a weak version of the Wong-Rosay theorem for convex, finite type domains admitting a ‘non-compact’ family of proper correspon-
متن کاملSome Applications of Schwarz Lemma for Operators
A generalized Schwarz lemma and some Harnack type inequalities for operators have been obtained in this paper.
متن کاملA Relative of the Lemma of Schwarz*
so that d(r, 0; ƒ') is the length of the segment on the w-plane between the image of the point 3 = 0 and the image of the point z = re. The lemma of Schwarz is the following: THEOREM 1. Let w=f(z) be analytic f or \z\ < 1 . If d(r,6;f)S 1 for all (r, 6) with r<l, then (1) d(r,0;f)gr and (2) | / ( 0 ) | ^ 1 . The sign of equality holds in (1) (for r^O) and in (2), if and only if \f(z) | = 1 ; th...
متن کاملLinear Connectivity, Schwarz-pick Lemma and Univalency Criteria for Planar Harmonic Mappings
In this paper, we first establish the Schwarz-Pick lemma of higherorder and apply it to obtain a univalency criteria for planar harmonic mappings. Then we discuss distortion theorems, Lipschitz continuity and univalency of planar harmonic mappings defined in the unit disk with linearly connected images.
متن کاملA General Schwarz Lemma for Almost-hermitian Manifolds
We prove a version of Yau’s Schwarz Lemma for general almost-complex manifolds equipped with almost-Hermitian metrics. This requires an extension to this setting of the Laplacian comparison theorem. As an application we show that the product of two almost-complex manifolds does not admit any complete almost-Hermitian metric with bisectional curvature bounded between two negative constants that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2018
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1815385z