Scaling machine learning for target prediction in drug discovery using Apache Spark
نویسندگان
چکیده
منابع مشابه
MLlib: Machine Learning in Apache Spark
Apache Spark is a popular open-source platform for large-scale data processing that is well-suited for iterative machine learning tasks. In this paper we present MLlib, Spark’s open-source distributed machine learning library. MLlib provides efficient functionality for a wide range of learning settings and includes several underlying statistical, optimization, and linear algebra primitives. Shi...
متن کاملBenchmarking Apache Spark with Machine Learning Applications
We benchmarked Apache Spark with a popular parallel machine learning training application, Distributed Stochastic Gradient Descent for Matrix Factorization [5] and compared the Spark implementation with alternative approaches for communicating model parameters, such as scheduled pipelining using POSIX socket or MPI, and distributed shared memory (e.g. parameter server [13]). We found that Spark...
متن کاملScaling Evolutionary Programming with the Use of Apache Spark
Organizations across the globe gather more and more data, encouraged by easyto-use and cheap cloud storage services. Large datasets require new approaches to analysis and processing, which include methods based on machine learning. In particular, symbolic regression can provide many useful insights. Unfortunately, due to high resource requirements, use of this method for large-scale dataset ana...
متن کاملReal-time News Recommendations using Apache Spark
Recommending news articles is a challenging task due to the continuous changes in the set of available news articles and the contextdependent preferences of users. Traditional recommender approaches are optimized for analyzing static data sets. In news recommendation scenarios, characterized by continuous changes, high volume of messages, and tight time constraints, alternative approaches are n...
متن کاملDeep Learning for Drug Target Prediction
An important computational tool in drug design is target prediction where either for a given chemical structure the interacting biomolecules (e.g. proteins) must be identified. Chemical structures interact with different biomolecules if they have similar 3D structure. Thus, the outputs of the prediction are highly interdependent from each other. Furthermore, we have partially labelled molecules...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Future Generation Computer Systems
سال: 2017
ISSN: 0167-739X
DOI: 10.1016/j.future.2016.04.023