Sampling Kaczmarz-Motzkin method for linear feasibility problems: generalization and acceleration
نویسندگان
چکیده
Randomized Kaczmarz, Motzkin Method and Sampling Kaczmarz (SKM) algorithms are commonly used iterative techniques for solving a system of linear inequalities (i.e., \(Ax \le b\)). As systems equations represent modeling paradigm many optimization problems, these randomized gaining popularity among researchers in different domains. In this work, we propose Generalized (GSKM) method that unifies the methods into single framework. addition to general framework, Nesterov-type acceleration scheme SKM called Probably Accelerated (PASKM). We prove convergence theorems both GSKM PASKM \(L_2\) norm perspective with respect proposed sampling distribution. Furthermore, sub-linear Cesaro average iterates algorithms. From theorem algorithm, find results several well-known like method, algorithm. perform thorough numerical experiments using randomly generated real-world (classification support vector machine Netlib LP) test instances demonstrate efficiency methods. compare SKM, Interior Point Active Set terms computation time solution quality. majority problem instances, generalized accelerated significantly outperform state-of-the-art
منابع مشابه
A Sampling Kaczmarz-Motzkin Algorithm for Linear Feasibility
We combine two iterative algorithms for solving large-scale systems of linear inequalities, the relaxation method of Agmon, Motzkin et al. and the randomized Kaczmarz method. We obtain a family of algorithms that generalize and extend both projection-based techniques. We prove several convergence results, and our computational experiments show our algorithms often outperform the original methods.
متن کاملProjection Method with Residual Selection for Linear Feasibility Problems
We propose a new projection method for linear feasibility problems. The method is based on the so called residual selection model. We present numerical results for some test problems.
متن کاملMultilevel Linear Sampling Method for Inverse Scattering Problems
A novel multilevel algorithm is presented for implementing the widely used linear sampling method in inverse obstacle scattering problems. The new method is shown to possess asymptotically optimal computational complexity. For an n×n sampling mesh in R2 or an n×n×n sampling mesh in R3, the proposed algorithm requires one to solve only O(nN−1) far-field equations for a RN problem (N=2,3), and th...
متن کاملsemi-analytical solution for static and forced vibration problems of laminated beams through smooth fundamental functions method
در این پایان نامه روش جدیدی مبتنی بر روش حل معادلات دیفرانسیل پارهای بر اساس روش توابع پایه برای حل مسایل ارتعاش اجباری واستاتیک تیرها و صفحات لایه ای ارایه شده است که می توان تفاوت این روش با روش های متداول توابع پایه را در استفاده از توابع هموار در ارضاء معادلات حاکم و شرایط مرزی دانست. در روش ارایه شده در این پایاننامه از معادله تعادل به عنوان معادله حاکم بر رفتار سیستم استفاده شده است که مو...
15 صفحه اولDefuzzification Method for Solving Fuzzy Linear Programming Problems
Several authors have proposed different methods to find the solution of fully fuzzy linear programming (FFLP) problems. But all the existing methods are based on the assumption that all the fuzzy coefficients and the fuzzy variables are non-negative fuzzy numbers. in this paper a new method is proposed to solve an FFLP problems with arbitrary fuzzy coefficients and arbitrary fuzzy variables, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming
سال: 2021
ISSN: ['0025-5610', '1436-4646']
DOI: https://doi.org/10.1007/s10107-021-01649-8