Rule Extraction Model Based on Decision Dependency Degree
نویسندگان
چکیده
منابع مشابه
Decision Degree-based Decision Tree Technology for Rule Extraction
Traditional rough set-based approaches to reduct have difficulties in constructing optimal decision tree, such as empty branches and over-fitting, selected attribute with more values, and increased expense of computational effort. It is necessary to investigate fast and effective search algorithms. In this paper, to address this issue, the limitations of current knowledge reduction for evaluati...
متن کاملmortality forecasting based on lee-carter model
over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...
15 صفحه اولMulti-Word Unit Dependency Forest-based Translation Rule Extraction
Translation requires non-isomorphic transformation from the source to the target. However, non-isomorphism can be reduced by learning multi-word units (MWUs). We present a novel way of representating sentence structure based on MWUs, which are not necessarily continuous word sequences. Our proposed method builds a simpler structure of MWUs than words using words as vertices of a dependency stru...
متن کاملRule-based Model Extraction from Source Code
In the context of an approach for reengineering legacy software systems at the architectural level, we present in this paper a reverse engineering methodology that uses a model defined as a type graph to represent source-code subject to a code categorization process. Two alternative methods for referencing the source code are discussed: native vs. graphical. To represent the code, the native re...
متن کاملDecision Rule Extraction for Regularized Multiple Criteria Linear Programming Model
Due to the flexibility of multi-criteria optimization, Regularized Multiple Criteria Linear Programming (RMCLP) has received attention in decision support systems. Numerous theoretical and empirical studies have demonstrated that RMCLP is effective and efficient in classifying large scale data sets. However, a possible limitation of RMCLP is poor interpretability and low comprehensibility for e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2019
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2019/5850410