منابع مشابه
Phosphorylation-dependent 14-3-3 protein interactions regulate CFTR biogenesis
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP/protein kinase A (PKA)-regulated chloride channel whose phosphorylation controls anion secretion across epithelial cell apical membranes. We examined the hypothesis that cAMP/PKA stimulation regulates CFTR biogenesis posttranslationally, based on predicted 14-3-3 binding motifs within CFTR and forskolin-induced CFTR expression...
متن کاملModulators of 14-3-3 Protein-Protein Interactions.
Direct interactions between proteins are essential for the regulation of their functions in biological pathways. Targeting the complex network of protein-protein interactions (PPIs) has now been widely recognized as an attractive means to therapeutically intervene in disease states. Even though this is a challenging endeavor and PPIs have long been regarded as "undruggable" targets, the last tw...
متن کاملSpecificity of 14-3-3 isoform dimer interactions and phosphorylation.
Proteins that interact with 14-3-3 isoforms are involved in regulation of the cell cycle, intracellular trafficking/targeting, signal transduction, cytoskeletal structure and transcription. Recent novel roles for 14-3-3 isoforms include nuclear trafficking the direct interaction with cruciform DNA and with a number of receptors, small G-proteins and their regulators. Recent findings also show t...
متن کاملRsk-mediated phosphorylation and 14-3-3ɛ binding of Apaf-1 suppresses cytochrome c-induced apoptosis.
Many pro-apoptotic signals trigger mitochondrial cytochrome c release, leading to caspase activation and ultimate cellular breakdown. Cell survival pathways, including the mitogen-activated protein kinase (MAPK) cascade, promote cell viability by impeding mitochondrial cytochrome c release and by inhibiting subsequent caspase activation. Here, we describe a mechanism for the inhibition of cytoc...
متن کاملRsk-mediated phosphorylation and 14-3-3e binding of Apaf-1 suppresses cytochrome c-induced apoptosis
Many pro-apoptotic signals trigger mitochondrial cytochrome c release, leading to caspase activation and ultimate cellular breakdown. Cell survival pathways, including the mitogen-activated protein kinase (MAPK) cascade, promote cell viability by impeding mitochondrial cytochrome c release and by inhibiting subsequent caspase activation. Here, we describe a mechanism for the inhibition of cytoc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Research in Medical Sciences
سال: 2017
ISSN: 2320-6012,2320-6071
DOI: 10.18203/2320-6012.ijrms20170189