Rotation invariant, Riesz bases of directional wavelets

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Riesz bases of wavelets generated from multiresolution analysis

We investigate Riesz bases of wavelets generated from multiresolution analysis. This investigation leads us to a study of refinement equations with masks being exponentially decaying sequences. In order to study such refinement equations we introduce the cascade operator and the transition operator. It turns out that the transition operator associated with an exponentially decaying mask is a co...

متن کامل

Rotation Invariant Texture Classification Using Gabor Wavelets

A method of rotation invariant texture classification based on spatial frequency model is developed. Features are derived from the multichannel Gabor filtering method. The classification performance is first tested on a set 1440 samples of 15 Brodatz textures rotated in 12 directions (0 to 165 in steps of 15 degrees). For the 13-class problem reported in [13] we got better classification with o...

متن کامل

On duality of modular G-Riesz bases and G-Riesz bases in Hilbert C*-modules

In this paper, we investigate duality of modular g-Riesz bases and g-Riesz bases in Hilbert C*-modules. First we give some characterization of g-Riesz bases in Hilbert C*-modules, by using properties of operator theory. Next, we characterize the duals of a given g-Riesz basis in Hilbert C*-module. In addition, we obtain sufficient and necessary condition for a dual of a g-Riesz basis to be agai...

متن کامل

Rotation-Invariant Texture Segmentation using Continuous Wavelets

A successful class of texture analysis methods is based on multiresolution decompositions. Especially Gabor lters have extensively been used [1] [2] [3] [4] [5] [6]. More recently, decompositions with pyramidal and tree structured wavelet transforms have been proposed [7] [8] [9] [10]. An important aspect is the rotation invariance of the features. A discrete wavelet transform does not provide ...

متن کامل

G-Frames, g-orthonormal bases and g-Riesz bases

G-Frames in Hilbert spaces are a redundant set of operators which yield a representation for each vector in the space. In this paper we investigate the connection between g-frames, g-orthonormal bases and g-Riesz bases. We show that a family of bounded operators is a g-Bessel sequences if and only if the Gram matrix associated to its denes a bounded operator.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied and Computational Harmonic Analysis

سال: 2019

ISSN: 1063-5203

DOI: 10.1016/j.acha.2017.04.001