Rosette Harmonic Mappings

نویسندگان

چکیده

A harmonic mapping is a univalent function of one complex variable. We define family mappings on the unit disk whose images are rotationally symmetric “rosettes” with n cusps or nodes, \(n\ge 3\). These analogous to n-cusped hypocycloid, but modified by Gauss hypergeometric factors, both in analytic and co-analytic parts. Relative rotations an angle \(\beta \) anti-analytic parts lead graphs that have cyclic, some cases dihedral symmetry order n. While for different can be dissimilar, aligned along axes independent \). For certain isolated values \), boundary continuous arcs constancy, has nodes interior \(\pi /2-\pi /n\) instead cusps.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harmonic Mappings of Spheres

Introduction and statement of results. This announcement describes an elementary method of constructing harmonic maps in some cases not covered by the general existence theory. Recall that given smooth Riemannian manifolds N and M, with N compact, then the energy functional E:H(N,M) -> R is defined on a suitable manifold of maps H(iV, M ) and is given by E{ f ) = \ \n \df | . A map ƒ is said to...

متن کامل

Harmonic Mappings between Riemannian

Harmonic mappings between two Riemannian manifolds is an object of extensive study, due to their wide applications in mathematics, science and engineering. Proving the existence of such mappings is challenging because of the non-linear nature of the corresponding partial differential equations. This thesis is an exposition of a theorem by Eells and Sampson, which states that any given map from ...

متن کامل

Harmonic Close-to-convex Mappings

Sufficient coefficient conditions for complex functions to be close-to-convex harmonic or convex harmonic are given. Construction of close-to-convex harmonic functions is also studied by looking at transforms of convex analytic functions. Finally, a convolution property for harmonic functions is discussed. Harmonic, Convex, Close-to-Convex, Univalent.

متن کامل

Convolutions of Harmonic Convex Mappings

The first author proved that the harmonic convolution of a normalized right half-plane mapping with either another normalized right halfplane mapping or a normalized vertical strip mapping is convex in the direction of the real axis. provided that it is locally univalent. In this paper, we prove that in general the assumption of local univalency cannot be omitted. However, we are able to show t...

متن کامل

Lipschitz Spaces and Harmonic Mappings

In [11] the author proved that every quasiconformal harmonic mapping between two Jordan domains with C, 0 < α ≤ 1, boundary is biLipschitz, providing that the domain is convex. In this paper we avoid the restriction of convexity. More precisely we prove: any quasiconformal harmonic mapping between two Jordan domains Ωj , j = 1, 2, with C, j = 1, 2 boundary is bi-Lipschitz.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Complex Analysis and Operator Theory

سال: 2021

ISSN: ['1661-8254', '1661-8262']

DOI: https://doi.org/10.1007/s11785-021-01085-8