Roof Shape Classification from LiDAR and Satellite Image Data Fusion Using Supervised Learning
نویسندگان
چکیده
منابع مشابه
Building Classification Using Airborne Lidar Data with Satellite Sar Data
In general, airborne photogrammetry and LiDAR measurements are applied to geometrical data acquisition for automated map generation and revision. However, attribute data acquisition and classification depend on manual editing works including ground surveys. On the other hand, SAR data have a possibility to automate the attribute data acquisition and classification. Thus, we focus on an integrat...
متن کاملDetecting Concept Drift in Data Stream Using Semi-Supervised Classification
Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...
متن کاملBUILDING ROOF CONTOUR EXTRACTION FROM LiDAR DATA
This paper proposes a method for the automatic extraction of building roof contours from a LiDAR-derived digital surface model (DSM). The method is based on two steps. First, to detect aboveground objects (buildings, trees, etc.), the DSM is segmented through a recursive splitting technique followed by a region merging process. Vectorization and polygonization are used to obtain polyline repres...
متن کاملFusion of Airborne LiDAR Data and Satellite SAR Data for Building Classification
In an airborne photogrammetry, a geometrical modeling and object classification can be automated using color images. Stereo matching is an essential technique to reconstruct 3D model from images. Although, object classification methods are automated using height data estimated with the stereo matching, it is difficult to recognize construction materials, such as woods and concrete. The construc...
متن کاملSatellite Imagery Classification with Lidar Data
This paper shows the potential of LIDAR for extracting buildings and other objects from medium resolution satellite imagery. To that end, the study integrated multispectral and LIDAR elevation data in a single imagery file and then classified it using the Support Vector Machine. To determine the method’s potential, the study used a SPOT5 satellite from an area situated southeast of Madrid, Spai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2018
ISSN: 1424-8220
DOI: 10.3390/s18113960