Rolling Bearing Reliability Assessment via Kernel Principal Component Analysis and Weibull Proportional Hazard Model

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel Principal Component Analysis

A new method for performing a nonlinear form of Principal Component Analysis is proposed. By the use of integral operator kernel functions, one can e ciently compute principal components in high{ dimensional feature spaces, related to input space by some nonlinear map; for instance the space of all possible d{pixel products in images. We give the derivation of the method and present experimenta...

متن کامل

Random proportional Weibull hazard model for large-scale information systems

Purpose – This study aims to focus on asset management of large-scale information systems supporting infrastructures and especially seeks to address a methodology of their statistical deterioration prediction based on their historical inspection data. Information systems are composed of many devices. Deterioration process i.e. wear-out failure generation process of those devices is formulated b...

متن کامل

Robust Kernel Principal Component Analysis

Kernel Principal Component Analysis (KPCA) is a popular generalization of linear PCA that allows non-linear feature extraction. In KPCA, data in the input space is mapped to higher (usually) dimensional feature space where the data can be linearly modeled. The feature space is typically induced implicitly by a kernel function, and linear PCA in the feature space is performed via the kernel tric...

متن کامل

Streaming Kernel Principal Component Analysis

Kernel principal component analysis (KPCA) provides a concise set of basis vectors which capture nonlinear structures within large data sets, and is a central tool in data analysis and learning. To allow for nonlinear relations, typically a full n ⇥ n kernel matrix is constructed over n data points, but this requires too much space and time for large values of n. Techniques such as the Nyström ...

متن کامل

Distributed Kernel Principal Component Analysis

Kernel Principal Component Analysis (KPCA) is a key technique in machine learning for extracting the nonlinear structure of data and pre-processing it for downstream learning algorithms. We study the distributed setting in which there are multiple workers, each holding a set of points, who wish to compute the principal components of the union of their pointsets. Our main result is a communicati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Shock and Vibration

سال: 2017

ISSN: 1070-9622,1875-9203

DOI: 10.1155/2017/6184190