Rolling Bearing Fault Diagnosis Based on SVD-GST Combined with Vision Transformer
نویسندگان
چکیده
Aiming at rolling bearing fault diagnosis, the collected vibration signal contains complex noise interference, and one-dimensional information cannot be used to fully mine data features of problem. This paper proposes a diagnosis method based on SVD-GST combined with Vision Transformer. Firstly, is preprocessed reduce using singular value decomposition (SVD) obtain more accurate useful signal. Then, generalized S-transform (GST) convert processed into two-dimensional time–frequency image make full use advantages deep learning in classification higher recognition accuracy. In order avoid problem limited sensory fields CNN need for an RNN compute step by over time when processing sequence data, Transformer model pattern proposed. Finally, experimental platform bearings built. The experimentally validated, achieving average accuracy 98.52% multiple tests. Additionally, compared SVD-GST-2DCNN, STFT-CNN-LSTM, SVD-GST-LSTM, GST-ViT models, proposed has diagnostic stability, providing new diagnosis.
منابع مشابه
Neural-network-based motor rolling bearing fault diagnosis
Motor systems are very important in modern society. They convert almost 60% of the electricity produced in the U.S. into other forms of energy to provide power to other equipment. In the performance of all motor systems, bearings play an important role. Many problems arising in motor operations are linked to bearing faults. In many cases, the accuracy of the instruments and devices used to moni...
متن کاملA DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks
A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...
متن کاملResearch on Rolling Bearing Fault Diagnosis with Adaptive Frequency Selection based on LabVIEW
In order to study the on-line fault monitoring and diagnosing for the rolling bearing this paper proposes a resonant demodulation measurement with an adaptive frequency selection based on LabVIEW. The wavelet packet function is used to decompose and reconstruct the measured vibration signal to extract the fault information accurately under the noise background. The kurtosis value of the signal ...
متن کاملStudy on Transformer Fault Diagnosis Based on Dynamic Fault Tree
In this paper, according to theoretical diagnosis of fault tree, the author builds a diagnosis model based on dynamic fault tree and illustrates the model’s construction method and diagnosis logic in detail. According to case analysis, compared with conventional fault tree diagnosis, the above-mentioned method is advanced in fault-tolerant ability. Plus, the diagnosis results record some interm...
متن کاملImproved Ensemble Empirical Mode Decomposition for Rolling Bearing Fault Diagnosis
Rolling bearing is an important part in mechanical system and faults occur frequently with vibration noise. Empirical mode decomposition (EMD) is a tool for nonlinear and non-stationary signals analysis. However, the major drawbacks of EMD are mode mixing problem, ensemble empirical mode decomposition (EEMD) provides a new tool for signal analysis, and it is an improved technique of EMD. In ord...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics
سال: 2023
ISSN: ['2079-9292']
DOI: https://doi.org/10.3390/electronics12163515