Robustness of Stepwise Latent Class Modeling With Continuous Distal Outcomes
نویسندگان
چکیده
منابع مشابه
Stepwise Latent Class Models for Explaining Group-Level Outcomes Using Discrete Individual-Level Predictors.
Explaining group-level outcomes from individual-level predictors requires aggregating the individual-level scores to the group level and correcting the group-level estimates for measurement errors in the aggregated scores. However, for discrete variables it is not clear how to perform the aggregation and correction. It is shown how stepwise latent class analysis can be used to do this. First, a...
متن کاملLatent Growth Modeling and Latent Class Analysis
Geared towards capturing change, longitudinal research is able to provide insight into a variety of phenomena of interest to IS researchers, especially IT adoption and use. However, its potential is constrained by the data analysis methods typically used. In this paper, I introduce an advanced technique – Latent Curve Modeling – and demonstrate how this technique supports longitudinal data anal...
متن کاملDistinguishing between latent classes and continuous factors with categorical outcomes: Class invariance of parameters of factor mixture models.
Factor mixture models (FMM's) are latent variable models with categorical and continuous latent variables which can be used as a model-based approach to clustering. A previous paper covered the results of a simulation study showing that in the absence of model violations, it is usually possible to choose the correct model when fitting a series of models with different numbers of classes and fac...
متن کاملAn application of Measurement error evaluation using latent class analysis
Latent class analysis (LCA) is a method of evaluating non sampling errors, especially measurement error in categorical data. Biemer (2011) introduced four latent class modeling approaches: probability model parameterization, log linear model, modified path model, and graphical model using path diagrams. These models are interchangeable. Latent class probability models express l...
متن کاملClustering and combining pattern of metabolic syndrome components among Iranian population with latent class analysis
Background: Metabolic syndrome (MetS), a combination of coronary heart disease and diabetes mellitus risk factor, refer to one of the most challenging public health issues in worldwide. The aim of this study was to identify the subgroups of participants in a study on the basis of MetS components. Methods: The cross-sectional study took place in the districts related to Teh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Structural Equation Modeling: A Multidisciplinary Journal
سال: 2015
ISSN: 1070-5511,1532-8007
DOI: 10.1080/10705511.2014.955104