ROBUST REGRESSION IN MONTHLY BUSINESS SURVEY
نویسندگان
چکیده
منابع مشابه
Monthly streamflow forecasting using Gaussian Process Regression
Bureau of Economic Geology, Jackson School of Geosciences, University of Texas Austin, Austin, TX 78713, United States Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816, United States Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical, Agriculture, Chinese Academy of Sciences, Changsha, Ch...
متن کاملRobust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملRobust Regression in Stata
In regression analysis, the presence of outliers in the data set can strongly distort the classical least squares estimator and lead to unreliable results. To deal with this, several robust-to-outliers methods have been proposed in the statistical literature. In Stata, some of these methods are available through the commands rreg and qreg. Unfortunately, these methods only resist to some specif...
متن کاملRobust Regression
An introduction to robustness in statistics, with emphasis on its relevance to regression analysis. The weaknesses of the least squares estimator are highlighted, and the idea of error in data re ned. Properties such as breakdown, e ciency and equivariance are discussed and, through consideration of M, S and MM-estimators in relation to these properties, the progressive nature of robust estimat...
متن کاملRobust Regression
1. Introduction One of the most important statistical tools is a linear regression analysis for many fields. Nearly all regression analysis relies on the method of least squares for estimation of the parameters in the model. A problem that we often encountered in the application of regression is the presence of an outlier or outliers in the data. Outliers can be generated by from a simple opera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics in Transition. New Series
سال: 2015
ISSN: 1234-7655,2450-0291
DOI: 10.21307/stattrans-2015-008