Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression
نویسندگان
چکیده
منابع مشابه
Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data
Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...
متن کاملRobust Ridge Regression for High-Dimensional Data
Ridge regression, being based on the minimization of a quadratic loss function, is sensitive to outliers. Current proposals for robust ridge regression estimators are sensitive to bad leverage observations, cannot be employed when the number of predictors p is larger than the number of observations n; and have a low robustness when the ratio p=n is large. In this paper a ridge regression esti...
متن کاملA Robust Supervised Variable Selection for Noisy High-Dimensional Data
The Minimum Redundancy Maximum Relevance (MRMR) approach to supervised variable selection represents a successful methodology for dimensionality reduction, which is suitable for high-dimensional data observed in two or more different groups. Various available versions of the MRMR approach have been designed to search for variables with the largest relevance for a classification task while contr...
متن کاملMethods for regression analysis in high-dimensional data
By evolving science, knowledge and technology, new and precise methods for measuring, collecting and recording information have been innovated, which have resulted in the appearance and development of high-dimensional data. The high-dimensional data set, i.e., a data set in which the number of explanatory variables is much larger than the number of observations, cannot be easily analyzed by ...
متن کاملDimensionally Constrained Symbolic Regression
We describe dimensionally constrained symbolic regression which has been developed for mass measurement in certain classes of events in high-energy physics (HEP). With symbolic regression, we can derive equations that are well known in HEP. However, in problems with large number of variables, we find that by constraining the terms allowed in the symbolic regression, convergence behavior is impr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2021
ISSN: 2041-1723
DOI: 10.1038/s41467-021-23479-0