Robust deep learning framework for constitutive relations modeling

نویسندگان

چکیده

Modeling the full-range deformation behaviors of materials under complex loading and conditions is a significant challenge for constitutive relations (CRs) modeling. We propose general encoder-decoder deep learning framework that can model high-dimensional stress-strain data histories with robustness universal capability. The employs an encoder to project input information (e.g., history, conditions, information) lower-dimensional hidden space decoder map representation stress interest. evaluated various architectures, including gated recurrent unit (GRU), GRU attention, temporal convolutional network (TCN), Transformer encoder, on two datasets were designed include wide range conditions. All architectures achieved excellent test results root-mean-square error (RMSE) below 1 MPa. Additionally, we analyzed capability different make predictions out-of-domain applications, uncertainty estimation based ensembles. proposed approach provides robust alternative empirical/semi-empirical models CRs modeling, offering potential more accurate efficient design optimization.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

an investigation about the appropriate stochastic modeling framework for agricultural insurance pricing

با توجه به اینکه بیمه محصولات کشاورزی در ایران بیشتر جنبه ای حمایتی دارد و خسارات گزارش شده عموما بیش از حق بیمه های دریافت شده است، در این پایان نامه به جهت تعیین قیمت بیمه محصولات کشاورزی (گندم دیم) از فرآیندهای نوفه شلیک به عنوان مدلی مناسب استفاده شده است. بر اساس داده های صندوق بیمه کشاورزی از خسارات اعلام شده در سال زراعی 1388-1389 گندم دیم، در این پایان نامه حق بیمه خالص و ناخالص این محص...

Materials Testing for Constitutive relations

High suain rate tests have been carried out at both room temperature and 100°C on a Ti6A14V alloy using the torsional split Hopkinson pressure bar. An infrared radiometer has been developed to measure the surface temperature of the specimen during the high speed torsional test. Data have been obtained on the variation of stress with strain and strain rate at shear strain rates from 0.0007s" to ...

متن کامل

Learning Robust Deep Face Representation

With the development of convolution neural network, more and more researchers focus their attention on the advantage of CNN for face recognition task. In this paper, we propose a deep convolution network for learning a robust face representation. The deep convolution net is constructed by 4 convolution layers, 4 max pooling layers and 2 fully connected layers, which totally contains about 4M pa...

متن کامل

Least Squares Support Vector Machine for Constitutive Modeling of Clay

Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...

متن کامل

A Probabilistic Framework for Deep Learning

We develop a probabilistic framework for deep learning based on the Deep Rendering Mixture Model (DRMM), a new generative probabilistic model that explicitly capture variations in data due to latent task nuisance variables. We demonstrate that max-sum inference in the DRMM yields an algorithm that exactly reproduces the operations in deep convolutional neural networks (DCNs), providing a first ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Materialia

سال: 2023

ISSN: ['1873-2453', '1359-6454']

DOI: https://doi.org/10.1016/j.actamat.2023.118959