Robust Bayesian clustering

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Bayesian clustering

A new variational Bayesian learning algorithm for Student-t mixture models is introduced. This algorithm leads to (i) robust density estimation, (ii) robust clustering and (iii) robust automatic model selection. Gaussian mixture models are learning machines which are based on a divide-and-conquer approach. They are commonly used for density estimation and clustering tasks, but are sensitive to ...

متن کامل

Robust Bayesian Max-Margin Clustering

We present max-margin Bayesian clustering (BMC), a general and robust framework that incorporates the max-margin criterion into Bayesian clustering models, as well as two concrete models of BMC to demonstrate its flexibility and effectiveness in dealing with different clustering tasks. The Dirichlet process max-margin Gaussian mixture is a nonparametric Bayesian clustering model that relaxes th...

متن کامل

Bayesian Hierarchical Cross-Clustering

Most clustering algorithms assume that all dimensions of the data can be described by a single structure. Cross-clustering (or multiview clustering) allows multiple structures, each applying to a subset of the dimensions. We present a novel approach to crossclustering, based on approximating the solution to a Cross Dirichlet Process mixture (CDPM) model [Shafto et al., 2006, Mansinghka et al., ...

متن کامل

Nonparametric Bayesian Clustering Ensembles

Forming consensus clusters from multiple input clusterings can improve accuracy and robustness. Current clustering ensemble methods require specifying the number of consensus clusters. A poor choice can lead to under or over fitting. This paper proposes a nonparametric Bayesian clustering ensemble (NBCE) method, which can discover the number of clusters in the consensus clustering. Three infere...

متن کامل

Bayesian consensus clustering

MOTIVATION In biomedical research a growing number of platforms and technologies are used to measure diverse but related information, and the task of clustering a set of objects based on multiple sources of data arises in several applications. Most current approaches to multisource clustering either independently determine a separate clustering for each data source or determine a single 'joint'...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neural Networks

سال: 2007

ISSN: 0893-6080

DOI: 10.1016/j.neunet.2006.06.009