Robust and stable gene selection via Maximum–Minimum Correntropy Criterion

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust and stable gene selection via Maximum-Minimum Correntropy Criterion.

One of the central challenges in cancer research is identifying significant genes among thousands of others on a microarray. Since preventing outbreak and progression of cancer is the ultimate goal in bioinformatics and computational biology, detection of genes that are most involved is vital and crucial. In this article, we propose a Maximum-Minimum Correntropy Criterion (MMCC) approach for se...

متن کامل

Robust diffusion maximum correntropy criterion algorithm for distributed network estimation

Robust diffusion algorithms based on the maximum correntropy criterion(MCC) are developed to address the distributed networks estimation issue in impulsive(long-tailed) noise environments. The cost functions used in distributed network estimation are in general based on the mean square error (MSE) criterion, which is optimal only when the measurement noise is Gaussian. In non-Gaussian situation...

متن کامل

Robust Hammerstein Adaptive Filtering under Maximum Correntropy Criterion

The maximum correntropy criterion (MCC) has recently been successfully applied to adaptive filtering. Adaptive algorithms under MCC show strong robustness against large outliers. In this work, we apply the MCC criterion to develop a robust Hammerstein adaptive filter. Compared with the traditional Hammerstein adaptive filters, which are usually derived based on the well-known mean square error ...

متن کامل

Robust Deep Network with Maximum Correntropy Criterion for Seizure Detection

Effective seizure detection from long-term EEG is highly important for seizure diagnosis. Existing methods usually design the feature and classifier individually, while little work has been done for the simultaneous optimization of the two parts. This work proposes a deep network to jointly learn a feature and a classifier so that they could help each other to make the whole system optimal. To ...

متن کامل

l2, 1 Regularized correntropy for robust feature selection

In this paper, we study the problem of robust feature extraction based on l2,1 regularized correntropy in both theoretical and algorithmic manner. In theoretical part, we point out that an l2,1-norm minimization can be justified from the viewpoint of half-quadratic (HQ) optimization, which facilitates convergence study and algorithmic development. In particular, a general formulation is accordi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Genomics

سال: 2016

ISSN: 0888-7543

DOI: 10.1016/j.ygeno.2015.12.006