Robust A Posteriori Error Estimation for Nonconforming Finite Element Approximation
نویسندگان
چکیده
منابع مشابه
Robust a posteriori error estimation for the nonconforming Fortin-Soulie finite element approximation
We obtain a computable a posteriori error bound on the broken energy norm of the error in the Fortin–Soulie finite element approximation of a linear second order elliptic problem with variable permeability. This bound is shown to be efficient in the sense that it also provides a lower bound for the broken energy norm of the error up to a constant and higher order data oscillation terms. The est...
متن کاملA Posteriori Error Estimates for Nonconforming Finite Element Schemes
We derive a posteriori error estimates for nonconforming discretizations of Poisson's and Stokes' equations. The estimates are residual based and make use of weight factors obtained by a duality argument. Crouzeix-Raviart elements on triangles and rotated bilinear elements are considered. The quadrilateral case involves the introduction of additional local trial functions. We show that their in...
متن کاملA Posteriori Error Estimators for Nonconforming Approximation
In this paper, an alternative approach for constructing an a posteriori error estimator for non-conforming approximation of scalar elliptic equation is introduced. The approach is based on the usage of post-processing conforming finite element approximation of the non-conforming solution . Then, the compatible a posteriori error estimator is defined by the local norms of difference between the ...
متن کاملReliable a posteriori error control for nonconforming finite element approximation of Stokes flow
We derive computable a posteriori error estimates for the lowest order nonconforming Crouzeix–Raviart element applied to the approximation of incompressible Stokes flow. The estimator provides an explicit upper bound that is free of any unknown constants, provided that a reasonable lower bound for the inf-sup constant of the underlying problem is available. In addition, it is shown that the est...
متن کاملDual weighted a posteriori error estimation for a new nonconforming linear finite element on quadrilaterals
After a short introduction of a new nonconforming linear finite element on quadrilaterals recently developed by Park, we derive a dual weighted residual-based a posteriori error estimator (in the sense of Becker and Rannacher) for this finite element. By computing a corresponding dual solution we estimate the error with respect to a given target error functional. The reliability and efficiency ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Numerical Analysis
سال: 2005
ISSN: 0036-1429,1095-7170
DOI: 10.1137/s0036142903425112