RLPTO : A reinforcement learning-based performance-time optimized task and resource scheduling mechanism for distributed machine learning
نویسندگان
چکیده
With the wide application of deep learning, amount data required to train learning models is becoming increasingly larger, resulting in an increased training time and higher requirements for computing resources. To improve throughput a distributed system, task scheduling resource are required. This paper proposes combine ARIMA GRU predict future volume. In terms scheduling, multi-priority queues used divide tasks into different according their priorities ensure that high-priority can be completed advance. reinforcement method adopted manage limited The reward function constructed based on resources occupied by task, time, accuracy model. When model tends converge, gradually reduced so they allocated other tasks. results experiments demonstrate RLPTO use more compu-ting nodes when facing with large scale has good scalability. system experiment shows make cluster get largest reward.
منابع مشابه
Deep Reinforcement Learning for Multi-Resource Multi-Machine Job Scheduling
Minimizing job scheduling time is a fundamental issue in data center networks that has been extensively studied in recent years. The incoming jobs require different CPU and memory units, and span different number of time slots. The traditional solution is to design efficient heuristic algorithms with performance guarantee under certain assumptions. In this paper, we improve a recently proposed ...
متن کاملOperation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملReal-time Scheduling of a Flexible Manufacturing System using a Two-phase Machine Learning Algorithm
The static and analytic scheduling approach is very difficult to follow and is not always applicable in real-time. Most of the scheduling algorithms are designed to be established in offline environment. However, we are challenged with three characteristics in real cases: First, problem data of jobs are not known in advance. Second, most of the shop’s parameters tend to be stochastic. Third, th...
متن کاملReinforcement-Based Learning for Process Classification Task
In this work, we present a reinforcement-based learning algorithm that includes the automatic classification of both sensors and actions. The classification process is prior to any application of reinforcement learning. If categories are not at the adequate abstraction level, the problem could be not learnable. The classification process is usually done by the programmer and is not considered a...
متن کاملImproving Agent Performance for Multi-Resource Negotiation Using Learning Automata and Case-Based Reasoning
In electronic commerce markets, agents often should acquire multiple resources to fulfil a high-level task. In order to attain such resources they need to compete with each other. In multi-agent environments, in which competition is involved, negotiation would be an interaction between agents in order to reach an agreement on resource allocation and to be coordinated with each other. In recent ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Parallel and Distributed Systems
سال: 2023
ISSN: ['1045-9219', '1558-2183', '2161-9883']
DOI: https://doi.org/10.1109/tpds.2023.3317388