Ring graphs and Goldberg's bound on chromatic index
نویسندگان
چکیده
منابع مشابه
An improved bound on acyclic chromatic index of planar graphs
A proper edge coloring of a graph G is called acyclic if there is no bichromatic cycle in G. The acyclic chromatic index of G, denoted by χ′a(G), is the least number of colors k such that G has an acyclic edge k-coloring. Basavaraju et al. [Acyclic edgecoloring of planar graphs, SIAM J. Discrete Math. 25 (2) (2011), 463–478] showed that χ′a(G) ≤ ∆(G) + 12 for planar graphs G with maximum degree...
متن کاملChromatic Harmonic Indices and Chromatic Harmonic Polynomials of Certain Graphs
In the main this paper introduces the concept of chromatic harmonic polynomials denoted, $H^chi(G,x)$ and chromatic harmonic indices denoted, $H^chi(G)$ of a graph $G$. The new concept is then applied to finding explicit formula for the minimum (maximum) chromatic harmonic polynomials and the minimum (maximum) chromatic harmonic index of certain graphs. It is also applied to split graphs and ce...
متن کاملTotal-Chromatic Number and Chromatic Index of Dually Chordal Graphs
A graph is dually chordal if it is the clique graph of a chordal graph. Alternatively, a graph is dually chordal if it admits a maximum neighbourhood order. This class generalizes known subclasses of chordal graphs such as doubly chordal graphs, strongly chordal graphs and interval graphs. We prove that Vizing's total-colour conjecture holds for dually chordal graphs. We describe a new heuristi...
متن کاملVertex-splitting and Chromatic Index Critical Graphs
We study graphs which are critical with respect to the chromatic index. We relate these to the Overfull Conjecture and we study in particular their construction from regular graphs by subdividing an edge or by splitting a vertex. In this paper, we consider simple graphs (that is graphs which have no loops or multiple edges). An edge-colouring of a graph G is a map 4 : E(G) -+ cp, where cp is a ...
متن کاملA Combined Logarithmic Bound on the Chromatic Index of Multigraphs
For any multigraph G of order n, let Φ(G) denote the integer roundup of its fractional chromatic index. We show that the chomatic index χ (G) satisfies χ (G) ≤ Φ(G) + log(min{ n + 1 3 , Φ(G)}). The method used is deterministic (though it extends a famous probabilistic result by Kahn), and different from the re-coloring techniques that are the basis for many of the other known upper bounds on χ ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Graph Theory
سال: 2019
ISSN: 0364-9024,1097-0118
DOI: 10.1002/jgt.22494