منابع مشابه
53BP1 regulates DSB repair using Rif1 to control 5' end resection.
The choice between double-strand break (DSB) repair by either homology-directed repair (HDR) or nonhomologous end joining (NHEJ) is tightly regulated. Defects in this regulation can induce genome instability and cancer. 53BP1 is critical for the control of DSB repair, promoting NHEJ, and inhibiting the 5' end resection needed for HDR. Using dysfunctional telomeres and genome-wide DSBs, we ident...
متن کاملImpaired 53BP1/RIF1 DSB mediated end-protection stimulates CtIP-dependent end resection and switches the repair to PARP1-dependent end joining in G1
End processing at DNA double strand breaks (DSB) is a decisive step in repair pathway selection. Here, we investigated the role of 53BP1/RIF1 in limiting BRCA1/CtIP-mediated end resection to control DSB repair pathway choice. ATM orchestrates this process through 53BP1 phosphorylation to promote RIF1 recruitment. As cells enter S/G2-phase, end resection is activated, which displaces pATM from D...
متن کاملSaccharomyces cerevisiae Rif1 cooperates with MRX-Sae2 in promoting DNA-end resection.
Diverse roles in DNA metabolism have been envisaged for budding yeast and mammalian Rif1. In particular, yeast Rif1 is involved in telomere homeostasis, while its mammalian counterpart participates in the cellular response to DNA double-strand breaks (DSBs). Here, we show that Saccharomyces cerevisiae Rif1 supports cell survival to DNA lesions in the absence of MRX or Sae2. Furthermore, it cont...
متن کاملRIF1 Is Essential for 53BP1-Dependent Nonhomologous End Joining and Suppression of DNA Double-Strand Break Resection
The appropriate execution of DNA double-strand break (DSB) repair is critical for genome stability and tumor avoidance. 53BP1 and BRCA1 directly influence DSB repair pathway choice by regulating 5' end resection, but how this is achieved remains uncertain. Here we report that Rif1(-/-) mice are severely compromised for 53BP1-dependent class switch recombination (CSR) and fusion of dysfunctional...
متن کاملFANCD2 binds CtIP and regulates DNA-end resection during DNA interstrand crosslink repair.
The Fanconi anemia (FA) pathway is critically involved in the maintenance of hematopoietic stem cells and the suppression of carcinogenesis. A key FA protein, FANCD2, is monoubiquitinated and accumulates in chromatin in response to DNA interstrand crosslinks (ICLs), where it coordinates DNA repair through mechanisms that are still poorly understood. Here, we report that CtIP protein directly in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2013
ISSN: 0021-9258
DOI: 10.1074/jbc.m113.457440