Riemannian Newton-CG methods for constructing a positive doubly stochastic matrix from spectral data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix Eigen-decomposition via Doubly Stochastic Riemannian Optimization: Supplementary Material

Preparation First, based on the definitions of A t , Y t , ˜ Z t and Z t , we can write g t = G(s t , r t , X t) = p −1 st p −1 rt (I − X t X ⊤ t)(E st ⊙ A)(E ·rt ⊙ X) = (I − X t X ⊤ t)A t Y t. Then from (6), we have X t+1 = X t + α t g t W t − α 2 t 2 X t g ⊤ t g t W t. Since W t = (I + α 2 t 4 g ⊤ t g t) −1 = I − α 2 t 4 g ⊤ t g t + O(α 4 t), we get X t+1 = X t + α t A t Y t − α t X t X ⊤ t A...

متن کامل

Matrix Eigen-decomposition via Doubly Stochastic Riemannian Optimization

Matrix eigen-decomposition is a classic and long-standing problem that plays a fundamental role in scientific computing and machine learning. Despite some existing algorithms for this inherently non-convex problem, the study remains inadequate for the need of large data nowadays. To address this gap, we propose a Doubly Stochastic Riemannian Gradient EIGenSolver, DSRG-EIGS, where the double sto...

متن کامل

Constructing a Unitary Hessenberg Matrix from Spectral Data

We consider the numerical construction of a unitary Hessenberg matrix from spectral data using an inverse QR algorithm. Any unitary upper Hessenberg matrix H with nonnegative subdiagonal elements can be represented by 2n ? 1 real parameters. This representation, which we refer to as the Schur parameterization of H; facilitates the development of eecient algorithms for this class of matrices. We...

متن کامل

A semismooth Newton-CG based dual PPA for matrix spectral norm approximation problems

We consider a class of matrix spectral norm approximation problems for finding an affine combination of given matrices having the minimal spectral norm subject to some prescribed linear equality and inequality constraints. These problems arise often in numerical algebra, engineering and other areas, such as finding Chebyshev polynomials of matrices and fastest mixing Markov chain models. Based ...

متن کامل

A Semismooth Newton-CG Dual Proximal Point Algorithm for Matrix Spectral Norm Approximation Problems

We consider a class of matrix spectral norm approximation problems for finding an affine combination of given matrices having the minimal spectral norm subject to some prescribed linear equality and inequality constraints. These problems arise often in numerical algebra, engineering and other areas, such as finding Chebyshev polynomials of matrices and fastest mixing Markov chain models. Based ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inverse Problems

سال: 2020

ISSN: 0266-5611,1361-6420

DOI: 10.1088/1361-6420/abbac5