Riemannian metrics on differentiable stacks
نویسندگان
چکیده
منابع مشابه
ON THE LIFTS OF SEMI-RIEMANNIAN METRICS
In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...
متن کاملDifferentiable Stacks and Gerbes
We introduce differentiable stacks and explain the relationship with Lie groupoids. Then we study S-bundles and S-gerbes over differentiable stacks. In particular, we establish the relationship between S-gerbes and groupoid S-central extensions. We define connections and curvings for groupoid S-central extensions extending the corresponding notions of Brylinski, Hitchin and Murray for S-gerbes ...
متن کاملDifferentiable piecewise-Bézier interpolation on Riemannian manifolds
We propose a generalization of classical Euclidean piecewiseBézier surfaces to manifolds, and we use this generalization to compute a C1-surface interpolating a given set of manifold-valued data points associated to a regular 2D grid. We then propose an efficient algorithm to compute the control points defining the surface based on the Euclidean concept of natural C2-splines and show examples o...
متن کاملSobolev Metrics on the Riemannian Manifold of All Riemannian Metrics
On the manifold M(M) of all Riemannian metrics on a compact manifold M one can consider the natural L-metric as decribed first by [10]. In this paper we consider variants of this metric which in general are of higher order. We derive the geodesic equations, we show that they are well-posed under some conditions and induce a locally diffeomorphic geodesic exponential mapping. We give a condition...
متن کاملDifferentiable Piecewise-Bézier Surfaces on Riemannian Manifolds
We generalize the notion of Bézier surfaces and surface splines to Riemannian manifolds. To this end we put forward and compare three possible alternative definitions of Bézier surfaces. We furthermore investigate how to achieve Cand C-continuity of Bézier surface splines. Unlike in Euclidean space and for one-dimensional Bézier splines on manifolds, C-continuity cannot be ensured by simple con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2018
ISSN: 0025-5874,1432-1823
DOI: 10.1007/s00209-018-2154-6