Riemann-type functional equations

نویسندگان

چکیده

We study Riemann-type functional equations with respect to value-distribution theory and derive implications for their solutions. In particular, a fixed complex number $a\neq0$ function from the Selberg class $\mathcal{L}$, we prove Riemann-von Mangoldt formula of a-points $\Delta$-factor equation $\mathcal{L}$ an analog Landau's over these points. From last that ordinates $a$-points are uniformly distributed modulo one. Lastly, show existence mean-value values $\mathcal{L}(s)$ taken at

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orthogonal stability of mixed type additive and cubic functional equations

In this paper, we consider orthogonal stability of mixed type additive and cubic functional equation of the form $$f(2x+y)+f(2x-y)-f(4x)=2f (x+y)+2f(x-y)-8f(2x) +10f(x)-2f(-x),$$ with $xbot y$, where $bot$  is orthogonality in the sense of Ratz.

متن کامل

Second-order Functional-difference Equations. I: Method of the Riemann–hilbert Problem on Riemann Surfaces

An analytical method for scalar second-order functional-difference equations with meromorphic periodic coefficients is proposed. The technique involves reformulating the equation as a vector functional-difference equation of the first order and reducing it to a scalar Riemann–Hilbert problem for two finite segments on a hyperelliptic surface. The final step of the procedure is solution of the c...

متن کامل

On Cauchy-type functional equations

LetG be a Hausdorff topological locally compact group. LetM(G) denote the Banach algebra of all complex and bounded measures on G. For all integers n ≥ 1 and all μ ∈ M(G), we consider the functional equations ∫ G f(xty)dμ(t) = ∑n i=1gi(x)hi(y), x,y ∈ G, where the functions f , {gi}, {hi}: G → C to be determined are bounded and continuous functions on G. We show how the solutions of these equati...

متن کامل

Quadratic $alpha$-functional equations

In this paper, we solve the quadratic $alpha$-functional equations $2f(x) + 2f(y) = f(x + y) + alpha^{-2}f(alpha(x-y)); (0.1)$ where $alpha$ is a fixed non-Archimedean number with $alpha^{-2}neq 3$. Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the quadratic $alpha$-functional equation (0.1) in non-Archimedean Banach spaces.

متن کامل

orthogonal stability of mixed type additive and cubic functional equations

in this paper, we consider orthogonal stability of mixed type additive and cubic functional equation of the form $$f(2x+y)+f(2x-y)-f(4x)=2f (x+y)+2f(x-y)-8f(2x) +10f(x)-2f(-x),$$ with $xbot y$, where $bot$  is orthogonality in the sense of ratz.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae

سال: 2022

ISSN: ['0019-3577', '1872-6100']

DOI: https://doi.org/10.1016/j.indag.2022.08.002