Ricci flatness of certain compact pseudo-Kähler solvmanifolds
نویسندگان
چکیده
منابع مشابه
Ricci flow on compact Kähler manifolds of positive bisectional
where ω̃ = ( √ −1/2)g̃ij̄dz ∧ dz and Σ̃ = ( √ −1/2)R̃ij̄dz ∧ dz are the Kähler form, the Ricci form of the metric g̃ respectively, while c1(M) denotes the first Chern class. Under the normalized initial condition (2), the first author [3] (see also Proposition 1.1 in [4]) showed that the solution g(x, t) = ∑ gij̄(x, t)dz dz to the normalized flow (1) exists for all time. Furthermore by the work of Mok ...
متن کاملRicci Flatness of Asymptotically Locally Euclidean Metrics
In this article we study the metric property and the function theory of asymptotically locally Euclidean (ALE) Kähler manifolds. In particular, we prove the Ricci flatness under the assumption that the Ricci curvature of such manifolds is either nonnegative or nonpositive. The result provides a generalization of previous gap type theorems established by Greene and Wu, Mok, Siu and Yau, etc. It ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2012
ISSN: 0393-0440
DOI: 10.1016/j.geomphys.2011.06.006