Ricci curvature and volume growth

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Volume Geodesic Distortion and Ricci Curvature for Hamiltonian Dynamics

We study the variation of a smooth volume form along extremals of a variational problem with nonholonomic constraints and an action-like Lagrangian. We introduce a new invariant describing the interaction of the volume with the dynamics and we study its basic properties. We then show how this invariant, together with curvature-like invariants of the dynamics introduced in [4], appear in the exp...

متن کامل

Volume Geodesic Distorsion and Ricci Curvature for Hamiltonian Dynamics

We study the variation of a smooth volume form along extremals of a variational problem with nonholonomic constraints and an action-like Lagrangian. We introduce a new invariant describing the interaction of the volume with the dynamics and we study its basic properties. We then show how this invariant, together with curvature-like invariants of the dynamics introduced in [4], appear in the exp...

متن کامل

Volume Growth and the Topology of Manifolds with Non-negative Ricci Curvature

Abstract. Let Mn be a complete Riemannian manifold with Ric ≥ 0. In 1994, G. Perelman showed that there exists a constant δn > 0, depending only on the dimension of the manifold, such that if αM + limr→∞ Vol(Bp(r)) ωnr ≥ 1 − δn then M n is contractible. Here we employ the techniques of Perelman to find specific bounds on αM , depending only on k and n, which guarantee the k-homotopy group of Mn...

متن کامل

Manifolds of Positive Ricci Curvature with Almost Maximal Volume

10. In this note we consider complete Riemannian manifolds with Ricci curvature bounded from below. The well-known theorems of Myers and Bishop imply that a manifold M n with Ric ~ n 1 satisfies diam(1l1n) ~ diam(Sn(I)), Vol(Mn) ~ Vol(Sn(I)). It follows from [Ch] that equality in either of these estimates can be achieved only if M n is isometric to Sn (1). The natural conjecture is that a manif...

متن کامل

Positive Ricci Curvature

We discuss the Sasakian geometry of odd dimensional homotopy spheres. In particular, we give a completely new proof of the existence of metrics of positive Ricci curvature on exotic spheres that can be realized as the boundary of a parallelizable manifold. Furthermore, it is shown that on such homotopy spheres Σ the moduli space of Sasakian structures has infinitely many positive components det...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1991

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1991.148.161