RIBAUCOUR TRANSFORMATIONS ON LORENTZIAN SPACE FORMS IN LORENTZIAN SPACE FORMS
نویسندگان
چکیده
منابع مشابه
Null helices in Lorentzian space forms
In this paper we introduce a reference along a null curve in an n-dimensional Lorentzian space with the minimun number of curvatures. That reference generalizes the reference of Bonnor for null curves in Minkowski space-time and it is called the Cartan frame of the curve. The associated curvature functions are called the Cartan curvatures of the curve. We characterize the null helices (that is,...
متن کاملSpacelike hypersurfaces in Riemannian or Lorentzian space forms satisfying L_k(x)=Ax+b
We study connected orientable spacelike hypersurfaces $x:M^{n}rightarrowM_q^{n+1}(c)$, isometrically immersed into the Riemannian or Lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~L_kx=Ax+b$,~ where $L_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $H_{k+1}$ of the hypersurface for a fixed integer $0leq k
متن کاملOn the Classification of Lorentzian Sasaki Space Forms
Sasaki manifolds admit a nowhere vanishing vector field and it is always possible to consider a Lorentz metric on them. Then we are able to obtain a classification result for compact Lorentz–Sasaki space forms.
متن کاملSpacelike Willmore surfaces in 4-dimensional Lorentzian space forms
Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms, a topic in Lorentzian conformal geometry which parallels the theory of Willmore surfaces in S, are studied in this paper. We define two kinds of transforms for such a surface, which produce the so-called left/right polar surfaces and the adjoint surfaces. These new surfaces are again conformal Willmore surfaces. For them holds...
متن کاملspacelike hypersurfaces in riemannian or lorentzian space forms satisfying l_k(x)=ax+b
we study connected orientable spacelike hypersurfaces $x:m^{n}rightarrowm_q^{n+1}(c)$, isometrically immersed into the riemannian or lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~l_kx=ax+b$,~ where $l_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $h_{k+1}$ of the hypersurface for a fixed integer $0leq k
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Mathematical Society
سال: 2008
ISSN: 0304-9914
DOI: 10.4134/jkms.2008.45.6.1577