RIBAUCOUR TRANSFORMATIONS ON LORENTZIAN SPACE FORMS IN LORENTZIAN SPACE FORMS

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Null helices in Lorentzian space forms

In this paper we introduce a reference along a null curve in an n-dimensional Lorentzian space with the minimun number of curvatures. That reference generalizes the reference of Bonnor for null curves in Minkowski space-time and it is called the Cartan frame of the curve. The associated curvature functions are called the Cartan curvatures of the curve. We characterize the null helices (that is,...

متن کامل

Spacelike hypersurfaces in Riemannian or Lorentzian space forms satisfying L_k(x)=Ax+b

We study connected orientable spacelike hypersurfaces $x:M^{n}rightarrowM_q^{n+1}(c)$, isometrically immersed into the Riemannian or Lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~L_kx=Ax+b$,~ where $L_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $H_{k+1}$ of the hypersurface for a fixed integer $0leq k

متن کامل

On the Classification of Lorentzian Sasaki Space Forms

Sasaki manifolds admit a nowhere vanishing vector field and it is always possible to consider a Lorentz metric on them. Then we are able to obtain a classification result for compact Lorentz–Sasaki space forms.

متن کامل

Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms

Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms, a topic in Lorentzian conformal geometry which parallels the theory of Willmore surfaces in S, are studied in this paper. We define two kinds of transforms for such a surface, which produce the so-called left/right polar surfaces and the adjoint surfaces. These new surfaces are again conformal Willmore surfaces. For them holds...

متن کامل

spacelike hypersurfaces in riemannian or lorentzian space forms satisfying l_k(x)=ax+b

we study connected orientable spacelike hypersurfaces $x:m^{n}rightarrowm_q^{n+1}(c)$, isometrically immersed into the riemannian or lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~l_kx=ax+b$,~ where $l_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $h_{k+1}$ of the hypersurface for a fixed integer $0leq k

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Korean Mathematical Society

سال: 2008

ISSN: 0304-9914

DOI: 10.4134/jkms.2008.45.6.1577