Revisiting Semi-Supervised Learning for Online Deceptive Review Detection
نویسندگان
چکیده
منابع مشابه
Revisiting Semi-Supervised Learning with Graph Embeddings
We present a semi-supervised learning framework based on graph embeddings. Given a graph between instances, we train an embedding for each instance to jointly predict the class label and the neighborhood context in the graph. We develop both transductive and inductive variants of our method. In the transductive variant of our method, the class labels are determined by both the learned embedding...
متن کاملRevisiting Embedding Features for Simple Semi-supervised Learning
Recent work has shown success in using continuous word embeddings learned from unlabeled data as features to improve supervised NLP systems, which is regarded as a simple semi-supervised learning mechanism. However, fundamental problems on effectively incorporating the word embedding features within the framework of linear models remain. In this study, we investigate and analyze three different...
متن کاملSemi-supervised Learning for Anomalous Trajectory Detection
A novel learning framework is proposed for anomalous behaviour detection in a video surveillance scenario, so that a classifier which distinguishes between normal and anomalous behaviour patterns can be incrementally trained with the assistance of a human operator. We consider the behaviour of pedestrians in terms of motion trajectories, and parametrise these trajectories using the control poin...
متن کاملSemi-supervised Learning for Unknown Malware Detection
Malware is any kind of computer software potentially harmful to both computers and networks. The amount of malware is increasing every year and poses a serious global security threat. Signature-based detection is the most widely used commercial antivirus method, however, it consistently fails to detect new malware. Supervised machine-learning models have been used to solve this issue, but the u...
متن کاملOnline Semi-Supervised Learning on Quantized Graphs
In this paper, we tackle the problem of online semi-supervised learning (SSL). When data arrive in a stream, the dual problems of computation and data storage arise for any SSL method. We propose a fast approximate online SSL algorithm that solves for the harmonic solution on an approximate graph. We show, both empirically and theoretically, that good behavior can be achieved by collapsing near...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2017
ISSN: 2169-3536
DOI: 10.1109/access.2017.2655032