Revised GMDH Algorithm Using Prediction Sum of Squares (PSS) as a Criterion for Model Selection
نویسندگان
چکیده
منابع مشابه
A Prediction Divergence Criterion for Model Selection
The problem of model selection is inevitable in an increasingly large number of applications involving partial theoretical knowledge and vast amounts of information, like in medicine, biology or economics. The associated techniques are intended to determine which variables are “important” to “explain” a phenomenon under investigation. The terms “important” and “explain” can have very different ...
متن کاملRevised Gmdh-type Neural Network Algorithm with a Feedback Loop Identifying Sigmoid Function Neural Network
In this paper, a revised Group Method of Data Handling (GMDH)-type neural network algorithm with a feedback loop identifying sigmoid function neural network is proposed. In this algorithm, the optimum sigmoid function neural network architecture is automatically organized so as to minimize the prediction error criterion defined as Akaike’s Information Criterion (AIC) or Prediction Sum of Square...
متن کاملthe use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach
abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...
15 صفحه اولAn Incremental DC Algorithm for the Minimum Sum-of-Squares Clustering
Here, an algorithm is presented for solving the minimum sum-of-squares clustering problems using their difference of convex representations. The proposed algorithm is based on an incremental approach and applies the well known DC algorithm at each iteration. The proposed algorithm is tested and compared with other clustering algorithms using large real world data sets.
متن کاملAn EMO Algorithm Using the Hypervolume Measure as Selection Criterion
The hypervolume measure is one of the most frequently applied measures for comparing the results of evolutionary multiobjective optimization algorithms (EMOA). The idea to use this measure for selection is self-evident. A steady-state EMOA will be devised, that combines concepts of non-dominated sorting with a selection operator based on the hypervolume measure. The algorithm computes a well di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Society of Instrument and Control Engineers
سال: 1978
ISSN: 0453-4654
DOI: 10.9746/sicetr1965.14.519