Reverse order law for weighted Moore-Penrose inverses of multiple matrix products
نویسندگان
چکیده
منابع مشابه
The reverse order law for Moore-Penrose inverses of operators on Hilbert C*-modules
Suppose $T$ and $S$ are Moore-Penrose invertible operators betweenHilbert C*-module. Some necessary and sufficient conditions are given for thereverse order law $(TS)^{ dag} =S^{ dag} T^{ dag}$ to hold.In particular, we show that the equality holds if and only if $Ran(T^{*}TS) subseteq Ran(S)$ and $Ran(SS^{*}T^{*}) subseteq Ran(T^{*}),$ which was studied first by Greville [{it SIAM Rev. 8 (1966...
متن کاملthe reverse order law for moore-penrose inverses of operators on hilbert c*-modules
suppose $t$ and $s$ are moore-penrose invertible operators betweenhilbert c*-module. some necessary and sufficient conditions are given for thereverse order law $(ts)^{ dag} =s^{ dag} t^{ dag}$ to hold.in particular, we show that the equality holds if and only if $ran(t^{*}ts) subseteq ran(s)$ and $ran(ss^{*}t^{*}) subseteq ran(t^{*}),$ which was studied first by greville [{it siam rev. 8 (1966...
متن کاملA new equivalent condition of the reverse order law for G-inverses of multiple matrix products
In 1999, Wei [M.Wei, Reverse order laws for generalized inverse of multiple matrix products, Linear Algebra Appl., 293 (1999), pp. 273-288] studied reverse order laws for generalized inverses of multiple matrix products and derived some necessary and sufficient conditions for An{1}An−1{1} · · ·A1{1} ⊆ (A1A2 · · ·An){1} by using P-SVD (Product Singular Value Decomposition). In this paper, using ...
متن کاملEla a New Equivalent Condition of the Reverse Order Law for G-inverses of Multiple Matrix Products∗
In 1999, Wei [M.Wei, Reverse order laws for generalized inverse of multiple matrix products, Linear Algebra Appl., 293 (1999), pp. 273-288] studied reverse order laws for generalized inverses of multiple matrix products and derived some necessary and sufficient conditions for An{1}An−1{1} · · ·A1{1} ⊆ (A1A2 · · ·An){1} by using P-SVD (Product Singular Value Decomposition). In this paper, using ...
متن کاملThe M–matrix Moore–Penrose inverse problem for weighted paths
Abstract. A well–known property of an irreducible non–singular M–matrix is that its inverse is non–negative. However, when the matrix is an irreducible and singular M–matrix it is known that it has a generalized inverse which is non–negative, but this is not always true for any generalized inverse. We focus here in characterizing when the Moore–Penrose inverse of a symmetric, singular, irreduci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Inequalities & Applications
سال: 2014
ISSN: 1331-4343
DOI: 10.7153/mia-17-09