Restricted Minimum Error Entropy Criterion for Robust Classification

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantized Minimum Error Entropy Criterion

Comparing with traditional learning criteria, such as mean square error (MSE), the minimum error entropy (MEE) criterion is superior in nonlinear and non-Gaussian signal processing and machine learning. The argument of the logarithm in Renyis entropy estimator, called information potential (IP), is a popular MEE cost in information theoretic learning (ITL). The computational complexity of IP is...

متن کامل

On the Smoothed Minimum Error Entropy Criterion

Recent studies suggest that the minimum error entropy (MEE) criterion can outperform the traditional mean square error criterion in supervised machine learning, especially in nonlinear and non-Gaussian situations. In practice, however, one has to estimate the error entropy from the samples since in general the analytical evaluation of error entropy is not possible. By the Parzen windowing appro...

متن کامل

Learning theory approach to minimum error entropy criterion

We consider the minimum error entropy (MEE) criterion and an empirical risk minimization learning algorithm when an approximation of Rényi’s entropy (of order 2) by Parzen windowing is minimized. This learning algorithm involves a Parzen windowing scaling parameter. We present a learning theory approach for this MEE algorithm in a regression setting when the scaling parameter is large. Consiste...

متن کامل

Joint optimization on decoding graphs using minimum classification error criterion

Motivated by the inherent correlation between the speech features and their lexical words, we propose in this paper a new framework for learning the parameters of the corresponding acoustic and language models jointly. The proposed framework is based on discriminative training of the models’ parameters using minimum classification error criterion. To verify the effectiveness of the proposed fra...

متن کامل

Minimum Error Classification Clustering

Clustering is the problem of identifying the distribution of patterns and intrinsic correlations in large data sets by partitioning the data points into similarity classes. In this paper, we study on the problem of clustering categorical data, where data objects are made up of non-numerical attributes. We propose MECC (Minimum Error Classification Clustering), an alternative technique for categ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems

سال: 2021

ISSN: 2162-237X,2162-2388

DOI: 10.1109/tnnls.2021.3082571