Restricted Mean Values and Harmonic Functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harmonic functions via restricted mean-value theorems

Let f be a function on a bounded domain Ω ⊆ R and δ be a positive function on Ω such that B(x, δ(x)) ⊆ Ω. Let σ(f)(x) be the average of f over the ball B(x, δ(x)). The restricted mean-value theorems discuss the conditions on f, δ, and Ω under which σ(f) = f implies that f is harmonic. In this paper, we study the stability of harmonic functions with respect to the map σ. One expects that, in gen...

متن کامل

Mean values of multiplicative functions

Let f(n) be a totally multiplicative function such that |f(n)| ≤ 1 for all n, and let F (s) = ∑∞ n=1 f(n)n−s be the associated Dirichlet series. A variant of Halász’s method is developed, by means of which estimates for ∑N n=1 f(n)/n are obtained in terms of the size of |F (s)| for s near 1 with 1. The result obtained has a number of consequences, particularly concerning the zeros of the p...

متن کامل

Invariant Mean Value Property and Harmonic Functions

We give conditions on the functions σ and u on R such that if u is given by the convolution of σ and u, then u is harmonic on R.

متن کامل

Median Values, 1-harmonic Functions, and Functions of Least Gradient

Motivated by the mean value property of harmonic functions, we introduce the local and global median value properties for continuous functions of two variables. We show that the Dirichlet problem associated with the local median value property is either easy or impossible to solve, and we prove that continuous functions with this property are 1-harmonic in the viscosity sense. We then close wit...

متن کامل

Decay of Mean-values of Multiplicative Functions

p 1−f(p) p diverges then the limit in (1.1) exists, and equals 0 = Θ(f,∞). Wirsing’s result settled an old conjecture of P. Erdős and Wintner that every multiplicative function f with −1 ≤ f(n) ≤ 1 had a mean-value. The situation for complex valued multiplicative functions is more delicate. For example, the function f(n) = n (0 6= α ∈ R) does not have a mean-value because 1 x ∑ n≤x n iα ∼ x 1+i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1972

ISSN: 0002-9947

DOI: 10.2307/1996152