Restarting iterative projection methods for Hermitian nonlinear eigenvalue problems with minmax property
نویسندگان
چکیده
منابع مشابه
Restarting iterative projection methods for Hermitian nonlinear eigenvalue problems with minmax property
In this work we present a new restart technique for iterative projection methods for nonlinear eigenvalue problems admitting minmax characterization of their eigenvalues. Our technique makes use of the minmax induced local enumeration of the eigenvalues in the inner iteration. In contrast to global numbering which requires including all the previously computed eigenvectors in the search subspac...
متن کاملIterative Projection Methods for Large–scale Nonlinear Eigenvalue Problems
In this presentation we review iterative projection methods for sparse nonlinear eigenvalue problems which have proven to be very efficient. Here the eigenvalue problem is projected to a subspace V of small dimension which yields approximate eigenpairs. If an error tolerance is not met then the search space V is expanded in an iterative way with the aim that some of the eigenvalues of the reduc...
متن کاملProjection Methods for Nonlinear Sparse Eigenvalue Problems
This paper surveys numerical methods for general sparse nonlinear eigenvalue problems with special emphasis on iterative projection methods like Jacobi–Davidson, Arnoldi or rational Krylov methods and the automated multi–level substructuring. We do not review the rich literature on polynomial eigenproblems which take advantage of a linearization of the problem.
متن کاملOn convergence of iterative projection methods for symmetric eigenvalue problems
We prove global convergence of particular iterative projection methods using the so-called shift-and-invert technique for solving symmetric generalized eigenvalue problems. In particular, we aim to provide a variant of the convergence theorem obtained by Crouzeix, Philippe, and Sadkane for the generalized Davidson method. Our result covers the Jacobi-Davidson and the rational Krylov methods wit...
متن کاملConvergence orders of iterative methods for nonlinear eigenvalue problems
The convergence analysis of iterative methods for nonlinear eigenvalue problems is in the most cases restricted either to algebraic simple eigenvalues or to polynomial eigenvalue problems. In this paper we consider two classical methods for general holomorphic eigenvalue problems, namely the nonlinear generalized Rayleigh quotient iteration (NGRQI) and the augmented Newton method. For both meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerische Mathematik
سال: 2016
ISSN: 0029-599X,0945-3245
DOI: 10.1007/s00211-016-0804-3