Restarted GMRES preconditioned by deflation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Restarted Gmres Preconditioned by Deeation

This paper presents a new preconditioning technique for the restarted GMRES algorithm. It is based on an invariant subspace approximation which is updated at each cycle. Numerical examples show that this deea-tion technique gives a more robust scheme than the restarted algorithm, at a low cost of operations and memory.

متن کامل

Restarted Block Gmres with Deflation of Eigenvalues

Block-GMRES is an iterative method for solving nonsymmetric systems of linear equations with multiple right-hand sides. Restarting may be needed, due to orthogonalization expense or limited storage. We discuss how restarting affects convergence and the role small eigenvalues play. Then a version of restarted block-GMRES that deflates eigenvalues is presented. It is demonstrated that deflation c...

متن کامل

Complementary cycles of restarted GMRES

Restarted GMRES is one of the most popular methods for solving large nonsymmetric linear systems. The algorithm GMRES(m) restarts every m iterations. It is generally thought the information of previous GMRES cycles is lost at the time of a restart, so that each cycle contributes to the global convergence individually. However, this is not the full story. In this paper, we shed light on the rela...

متن کامل

Multi-preconditioned Gmres

Standard Krylov subspace methods only allow the user to choose a single preconditioner, although in many situations there may be a number of possibilities. Here we describe an extension of GMRES, multi-preconditioned GMRES, which allows the use of more than one preconditioner. We give some theoretical results, propose a practical algorithm, and present numerical results from problems in domain ...

متن کامل

Preconditioned GMRES for oscillatory integrals

None of the existing methods for computing the oscillatory integral ∫ b a f(x)e iωg(x) dx achieve all of the following properties: high asymptotic order, stability, avoiding the computation of the path of steepest descent and insensitivity to oscillations in f . We present a new method that satisfies these properties, based on applying the gmres algorithm to a preconditioned differential operator.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 1996

ISSN: 0377-0427

DOI: 10.1016/0377-0427(95)00047-x