Resolving Sets and Semi-Resolving Sets in Finite Projective Planes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resolving Sets and Semi-Resolving Sets in Finite Projective Planes

In a graph Γ = (V,E) a vertex v is resolved by a vertex-set S = {v1, . . . , vn} if its (ordered) distance list with respect to S, (d(v, v1), . . . , d(v, vn)), is unique. A set A ⊂ V is resolved by S if all its elements are resolved by S. S is a resolving set in Γ if it resolves V . The metric dimension of Γ is the size of the smallest resolving set in it. In a bipartite graph a semi-resolving...

متن کامل

Special Point Sets in Finite Projective Planes

We consider the following three problems: 1. Let U be a q-subset of GF(q 2) with the properties 0; 1 2 U and u ? v is a square for all u; v 2 U. Does it follow that U consists of the elements of the subbeld GF(q)? Here q is odd. 2. Let f : GF(q) ! GF(q) be any function, and let be the set of diierence quotients (directions, slopes). What are the possibilities for jD f j? 3. Let B be a subset of...

متن کامل

Pascal-Brianchon Sets in Pappian Projective Planes Pascal-Brianchon Sets in Pappian Projective Planes

It is well-known that Pascal and Brianchon theorems characterize conics in a Pappian projective plane. But, using these theorems and their modifications we shall show that the notion of a conic (or better a Pascal-Brianchon set) can be defined without any use of theory of projectivities or of polarities as usually.

متن کامل

Non-representability of finite projective planes by convex sets

We prove that there is no d such that all finite projective planes can be represented by convex sets in R, answering a question of Alon, Kalai, Matoušek, and Meshulam. Here, if P is a projective plane with lines l1, . . . , ln, a representation of P by convex sets in R is a collection of convex sets C1, . . . , Cn ⊆ R d such that Ci1 , Ci2 . . . , Cik have a common point if and only if the corr...

متن کامل

Determining Sets, Resolving Sets, and the Exchange Property

A subset U of vertices of a graph G is called a determining set if every automorphism of G is uniquely determined by its action on the vertices of U . A subset W is called a resolving set if every vertex in G is uniquely determined by its distances to the vertices of W . Determining (resolving) sets are said to have the exchange property in G if whenever S and R are minimal determining (resolvi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2012

ISSN: 1077-8926

DOI: 10.37236/2582