Resolving bundled microtubules using anti-tubulin nanobodies
نویسندگان
چکیده
منابع مشابه
Resolving bundled microtubules using anti-tubulin nanobodies
Microtubules are hollow biopolymers of 25-nm diameter and are key constituents of the cytoskeleton. In neurons, microtubules are organized differently between axons and dendrites, but their precise organization in different compartments is not completely understood. Super-resolution microscopy techniques can detect specific structures at an increased resolution, but the narrow spacing between n...
متن کاملBirefringence of single and bundled microtubules.
We have measured the birefringence of microtubules (MTs) and of MT-based macromolecular assemblies in vitro and in living cells by using the new Pol-Scope. A single microtubule in aqueous suspension and imaged with a numerical aperture of 1.4 had a peak retardance of 0.07 nm. The peak retardance of a small bundle increased linearly with the number of MTs in the bundle. Axonemes (prepared from s...
متن کاملDinitroanilines bind α-tubulin to disrupt microtubules
Protozoan parasites are remarkably sensitive to dinitroanilines such as oryzalin, which disrupt plant but not animal microtubules. To explore the basis of dinitroaniline action, we isolated 49 independent resistant Toxoplasma gondii lines after chemical mutagenesis. All 23 of the lines that we examined harbored single point mutations in -tubulin. These point mutations were sufficient to confer ...
متن کاملDynamics of microtubules bundled by microtubule associated protein 2C (MAP2C)
MAP2C is a microtubule-associated protein abundant in immature nerve cells. We isolated a cDNA clone encoding whole mouse MAP2C of 467 amino acid residues. In fibroblasts transiently transfected with cDNA of MAP2C, interphase microtubule networks were reorganized into microtubule bundles. To reveal the dynamic properties of microtubule bundles, we analyzed the incorporation sites of exogenously...
متن کاملInside out: tubulin cytomotive filaments versus microtubules.
In this issue of Structure, Zehr and colleagues describe a structure of a three-stranded PhuZ tubulin cytomotive filament determined at 8.6 Å resolution. This reveals an assembly mechanism different from that of microtubules, leading to a hypothesis explaining cytomotive-filament dynamics.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2015
ISSN: 2041-1723
DOI: 10.1038/ncomms8933