Resolvent Estimates for the Magnetic Hamiltonian with Singular Vector Potentials and Applications

نویسندگان

چکیده

For the magnetic Hamiltonian with singular vector potentials, we analytically continue resolvent to a logarithmic neighborhood of positive real axis and prove estimates there. As applications, obtain asymptotic locations resonances local smoothing estimate for solutions corresponding Schr\"odinger equation.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra-Relativistic Hamiltonian with Various Singular Potentials

It is shown from a simple scaling invariance that the ultra-relativistic Hamiltonian (μ=0) does not have bound states when the potential is Coulombic. This supplements the application of the relativistic virial theorem derived by Lucha and Schöberl [1,2] which shows that bound states do not exist for potentials more singular than the Coulomb potential. PACS numbers:03.65.Ge, 12.39.Ki, 12.39.Pn ...

متن کامل

On a Domain Characterization of Schrodinger Operators with Gradient Magnetic Vector Potentials and Singular Potentials

Of concern are the minimal and maximal operators on L2(R") associated with the differential expression Te = J2{id/dxJ + qJ{x))2 + W{x) j=i where (q.#„) = gradQ for some real function W on R" and W satisfies ¿M-2 < W(Jf) < C|x|~2 . In particular, for Q = 0, Xq reduces to the singular Schrödinger operator -A+ W{x). Among other results, it is shown that the maximal operator (associated with the xq...

متن کامل

Integrable Hamiltonian Systems with Vector Potentials

We investigate integrable 2-dimensional Hamiltonian systems with scalar and vector potentials, admitting second invariants which are linear or quadratic in the momenta. In the case of a linear second invariant, we provide some examples of weakly-integrable systems. In the case of a quadratic second invariant, we recover the classical strongly-integrable systems in Cartesian and polar coordinate...

متن کامل

Dispersion Estimates for One-dimensional Schrödinger Equations with Singular Potentials

We derive a dispersion estimate for one-dimensional perturbed radial Schrödinger operators. We also derive several new estimates for solutions of the underlying differential equation and investigate the behavior of the Jost function near the edge of the continuous spectrum.

متن کامل

Resolvent Estimates with Mild Trapping

We discuss recent progress in understanding the effects of certain trapping geometries on cut-off resolvent estimates, and thus on the qualititative behavior of linear evolution equations. We focus on trapping that is unstable, so that strong resolvent estimates hold on the real axis, and large resonance-free regions can be shown to exist beyond it.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2022

ISSN: ['0010-3616', '1432-0916']

DOI: https://doi.org/10.1007/s00220-022-04427-5